产品经理培训课件Axure实战指南
产品经理的成长路线图整理得比较全的课件,覆盖从 idea 到上线后的产品优化,逻辑清晰还蛮系统的。像 用户调研 和 需求管理 这块,不止讲方法,还搭配实际场景,挺适合刚入行或者想查缺补漏的你。
像 原型设计 这部分,结合 Axure 的使用技巧,有点实战味道,页面流程、交互点讲得蛮细,拿来就能用。如果你平时对 PRD 文档 有点头疼,这里也有标准格式和写法示例,响应也快,代码也简单。
另外比较有意思的是 产品流程 和 项目管理 的穿插内容,能帮你梳理从构思到执行的关键节点。嗯,像 roadmap 制定那段,配了个节奏图,直观又不啰嗦。
如果你对一些延伸内容感兴趣,比如 用户体验 和 数据,可以
统计分析
0
2025-06-25
数据化管理方法论指南
随着数据激增,数据价值挖掘成为关键。友盟+提出大数据应用方法论,帮助企业从数据中获取洞察,指导业务决策,驱动业务增长。
数据挖掘
18
2024-04-30
数据仓库建模方法论指南
本指南涵盖了数据仓库建模方法论,包括概念模型、数据架构、逻辑数据模型和标准化流程。
算法与数据结构
21
2024-04-30
数据仓库方法论
数仓方法论指引您构建数据仓库,实现数据转化为知识,据此采取行动、制定决策,清晰理解信息之间的关联性。
算法与数据结构
11
2024-05-01
数学建模方法论
数学建模利用数学工具解决实际问题。主要方法包括机理分析和测试分析,两者常结合使用以构建高效模型。
1. 机理分析:
基于对研究对象特性的深入理解,分析其内部规律,并用数学语言进行描述,建立模型。
该方法缺乏统一的标准流程,主要依靠案例学习和经验积累。
2. 测试分析:
将研究对象视为“黑箱”,通过收集和分析数据,寻找能够最佳拟合数据的数学模型。
常用方法包括回归分析、时间序列分析等。
3. 机理分析与测试分析的结合:
机理分析为模型构建提供理论框架,测试分析则利用数据对模型参数进行优化。
这种结合能够有效提升模型的准确性和可靠性。
4. 数学建模的一般步骤:
问题分析与模型假设:
统计分析
20
2024-05-30
Oracle数据仓库方法论
Oracle数据仓库方法论成功指导您构建数据仓库,利用其强大的功能和灵活性。
Oracle
20
2024-07-13
热传导建模方法论
构建热传导模型并确定参数,以解析热防护服装性能。采用多层服装-空气层-皮肤系统,阐释热传递过程,结合烧伤准则预测烧伤时间和优化系统参数。此外,考虑皮肤层传热模型和烧伤评估模型。
算法与数据结构
13
2024-05-19
性能调优方法论
性能调优方法论
性能调优是一项复杂的任务,需要一种系统的方法。概述了一种性能调优方法论,它提供了以下步骤:
定义调优目标
了解数据流和物理部署
识别主要性能影响因素
分析数据
优化系统
通过遵循此方法论,您可以系统地识别和解决性能问题,从而提高应用程序或服务的性能。
MySQL
17
2024-06-01
数据仓库建模方法论详解
数据仓库建模方法包括源系统ODS、EDW、独立数据集市和从属数据集市等不同类型。其中,独立数据集市和从属数据集市涉及到非一致维度与事实和一致维度与事实的概念。
算法与数据结构
16
2024-08-30