深度挖掘大数据,解析海量数据集,英文版本。
大数据挖掘教程
相关推荐
浙大数据挖掘教程
浙大数据挖掘课件助您掌握数据挖掘技能。
数据挖掘
14
2024-05-13
大数据与数据挖掘
深入浅出解析大数据与数据挖掘,了解数据分析领域前沿技术。
数据挖掘
26
2024-04-30
哈工大数据挖掘教材
哈工大优质数据挖掘课件,助你学习探索数据世界。
数据挖掘
15
2024-05-13
探索数据海洋:大数据挖掘之旅
潜入数据之海
大数据时代,蕴藏着无限机遇。数据挖掘,如同深海探宝,从海量数据中提取有价值的信息,为决策提供有力支持。
数据挖掘:点石成金
发现隐藏规律: 通过算法和模型,揭示数据背后的关联和趋势,预测未来发展。
洞察用户需求: 分析用户行为,精准刻画用户画像,实现个性化服务。
优化业务流程: 识别瓶颈和低效环节,提高效率,降低成本。
大数据:挖掘的宝藏
海量数据: 为挖掘提供充足的原材料,捕捉更细微的模式。
多样化数据: 整合来自不同来源的数据,提供更全面的视角。
实时性数据: 及时捕捉变化,快速反应,抢占先机。
数据挖掘:未来无限可能
随着技术的不断发展,数据挖掘将在更多领域发挥作用
数据挖掘
20
2024-05-19
基于大数据的数据挖掘引擎研究
为解决大数据环境下的数据挖掘难题,研究了基于Spark核心引擎的数据挖掘引擎。利用Spark的内存计算算子,实现了多个传统数据挖掘算法的并行计算,使其能在集群环境中高效运行。采用系统分层方法设计了数据挖掘系统,构建了完整的大数据挖掘平台。实验证明,基于Spark的并行计算能显著缩短执行时间,在大数据挖掘应用中表现优异。
数据挖掘
10
2024-08-24
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
16
2024-07-15
大数据挖掘系统方法与实例分析
随着技术的发展,数据挖掘在各行各业中扮演着越来越重要的角色。这本全书思维导图,采用纯手工制作,格式为xmind。
算法与数据结构
12
2024-08-03
数据挖掘是大数据时代关键的工作
数据挖掘是从海量数据中挖掘隐藏价值信息的自动化过程。它融合人工智能、机器学习等技术,帮助决策者识别模式,调整策略。
数据挖掘
14
2024-05-26
Web大数据挖掘第二版精要
本书大数据挖掘第二版的PDF版本,英文名为Mining of Massive Datasets。它深入探讨了如何有效地从海量数据中提取有价值的信息,适合希望提升数据分析能力的读者。
数据挖掘
8
2024-11-03