SPSS Clementine
当前话题为您枚举了最新的 SPSS Clementine。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
SPSS_Clementine教程
掌握数据挖掘工具的使用,了解数据流的建立方法和节点的操作。
数据挖掘
20
2024-05-25
SPSS Clementine 学习指南
一份 SPSS Clementine 学习指南,Word 格式,为数据挖掘学习者提供参考。
数据挖掘
13
2024-04-30
SPSS-Clementine 抽样节点详解
抽样节点
可选择按指定模式(包含或排除)抽取或丢弃记录。
样本:- 连续抽取:从第一条记录开始连续抽取。- n中取1:每 n 条记录抽取或丢弃一条记录。- 随机 %:随机抽取数据集指定百分比的样本。
最大样本量:设定抽取的样本最大数量。
随机数种子:设置随机种子值,用于生成随机数。
数据挖掘
21
2024-05-13
SPSS与Clementine数据挖掘初探
SPSS与Clementine数据挖掘技术的基础入门,介绍了它们在数据分析和挖掘领域的应用和基本原理。
数据挖掘
15
2024-07-17
数据挖掘技术与SPSS Clementine应用
数据挖掘过程中涉及数据源节点、数据库变量、固定文件、SPSS文件、Dimensions和SAS文件等内容,包括Excel中的用户输入记录、选项节点的选择、抽样、平衡、汇总、排序、合并、附加以及区分字段的选项节点。
数据挖掘
12
2024-07-18
数据挖掘:SPSS Clementine 原理与应用入门
数据挖掘:SPSS Clementine 原理与应用入门
1. SPSS Clementine 简介
2. SPSS Clementine 帮助获取
3. SPSS Clementine 应用领域
4. SPSS Clementine 数据挖掘入门指南
数据挖掘
16
2024-05-25
参数估计与SPSS-Clementine应用指南
在数据挖掘中,参数估计是一项关键技术。SPSS-Clementine作为应用工具,有效支持了这一过程。
数据挖掘
13
2024-09-13
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
14
2024-07-18
数据挖掘技术与SPSS-Clementine应用详解
在SPSS-Clementine中,数据挖掘技术涵盖多种数据类型:连续型适用于数值描述,离散型适用于描述未知数量的字符串,标志型用于仅有两个值的数据,集合型描述多个具体值的数据,有序集合型用于有内部顺序的数据,无类型则适用于不符合以上任一种类的数据或含有众多元素的集合类型数据。
数据挖掘
16
2024-07-24
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
12
2024-10-12