语言处理

当前话题为您枚举了最新的 语言处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

自然语言处理与Python
本书将带领您从数据预处理、特征提取、模型训练到模型测试的实际操作中,深入理解自然语言处理。通过逐步动手实践,您将直观地理解模型的概念。本书适合初学者深入学习自然语言处理,也是理论学习后的实践补充。
统计自然语言处理综述
技术发展推动了统计自然语言处理的前沿,涵盖形式语言与自动机在自然语言处理中的应用,以及语言模型、隐马尔可夫模型、语料库技术等理论与方法。特别关注汉语自动分词与词性标注、句法分析、词义消歧等实现方法和技术现状,还深入讨论了统计机器翻译、语音翻译、文本分类及信息检索与问答系统的进展,包括自动文摘和信息抽取、口语信息处理与人机对话系统的发展。
Matlab语言信号处理及其应用
这本书是为学习信号处理的通信界同学和业内人士提供的入门参考,同时也是提高Matlab信号处理应用能力的好书。
R语言脏数据处理方法详解
脏数据的几种姿势,我觉得你得了解下。缺失值、异常值、量纲不一致、多重共线性……这些在数据挖掘里都挺常见的。不好,建模效果大打折扣。文章里用 R 语言给了不少实战代码,比如用is.na()查缺失,用median()来补值,蛮实用的。 缺失值这块,代码还挺直观。先找空的,再算中位数补上,简单粗暴但效果还不错。Age 字段那段更进阶,用lm()建回归模型预测缺失值,用predict()搞定替换。适合数据量大、数据关系比较稳定的场景。 异常值也别小看。文章建议先画个箱型图看看分布,再用 winsorization 方法。就是把极端值拉回合理范围,挺适合金融、气象这些常见异常的领域。 再说量纲差异,单位
统计自然语言处理入门
统计自然语言处理的入门知识。
Python自然语言处理技术探索
下载NLTK数据可能会耗费较长时间,特别是在网络速度较慢的情况下。
Python自然语言处理的实践应用
Python作为一种强大的工具,在处理自然语言方面展示了其无可比拟的效率和灵活性。
TPL,事务处理语言MySQL学习文档
TPL,事务处理语言开始一个事务。提交所做的修改。如果在操作时出错,应该重新开始一个事务。
高级入门者的R语言数据处理攻略
本资源帮助那些已经掌握基础的R语言使用者,深入了解数据处理的实用技巧。介绍了数据框架在R语言中的重要性,以及如何有效地使用变量类型转换和数据结构查看功能。案例分析包括创建和管理数据框架,以及使用summary()和plot()函数进行数据分析和可视化。
SQL语言基础——字符串和日期处理技巧
SQL语句中的字符和日期处理需注意:字符应用单引号括起,日期格式为DD-MON-YY。例如,选择名为'JAMES'的员工信息示例。