规划问题
当前话题为您枚举了最新的规划问题。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
小白也能学规划问题
从 Lingo 入门数学建模,轻松理解 0-1 规划和整数规划。一步步掌握优化策略,成为数学建模高手。
统计分析
14
2024-04-30
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
10
2024-09-01
状态压缩类型动态规划问题分析
样例中的状态压缩类型动态规划问题,看似简单但挺有意思的,方式与广场铺砖问题类似,主要是通过**状态压缩**来优化方案。用二进制表示状态是一个常见的技巧,不仅可以减少空间复杂度,还能提高运行效率。就像那道 t2×3 地板铺法问题,使用动态规划可以把它变得挺高效。这里有些相关文章给你参考,不妨看看哦,能够你更好理解这一技术的应用。毕竟,动态规划不仅仅是解题技巧,它还是多复杂问题背后的支撑力量。嗯,如果你有类似的状态压缩问题,可以尝试参考这些资源,提升效率。
算法与数据结构
0
2025-06-15
状态压缩动态规划解决放置问题
在放置操作中,每一行有 w 个位置,因此每行状态可表示为 0 到 2^w - 1 的整数。
当前行的状态 s 由前一行状态 s' 转换而来。对于该行位置 j,状态转换规则如下:
若前一行位置 j 为 0,则该位置可以竖放,状态转换:0 -> 1
若前一行连续两个位置为 0,则这两个位置可以横放,状态转换:00 -> 00
若前一行位置 j 为 1,则该位置不可再放,状态转换:1 -> 0
算法与数据结构
10
2024-05-19
搜索与动态规划:探究问题本质
探索问题,开启算法之门
深入探讨“为什么讲这个问题” ,可以引导我们更好地理解搜索和动态规划算法。 这两种算法体现了“电脑”和“人脑”在解决问题上的差异: 电脑擅长快速枚举, 而人脑更倾向于总结规律, 找到最优解。
通过“回到起点”和“变换角度”的思考方式, 我们可以不断优化解题思路, 将复杂问题分解成可解决的子问题。 动态规划正是利用了这种思想, 通过记录子问题的解, 避免重复计算, 从而提高效率。
算法与数据结构
9
2024-05-19
MatLab非线性规划问题实验方法
MatLab 的非线性规划(NLP)问题方案,挺适合做优化类问题的实验,尤其是涉及到科学计算和工程设计时。MatLab 优化工具箱强大,它包含了多非线性问题的函数,比如fmincon和fminunc,都可以你搞定有约束或无约束的优化问题。fmincon适合带约束的情况,比如线性、不等式等,而fminunc则用于没有约束的情况,代码也比较简洁。重点是,在建模时你得搞清楚目标函数和约束条件,这样才能正确地进行优化。比如,如果你要最大化某个量,可以在fmincon里设定目标函数和相关约束,MatLab 会帮你掉复杂的计算。,算法的选择也重要。MatLab 支持不同的优化算法,比如梯度下降法、拟牛顿法
Matlab
0
2025-06-15
背包问题动态规划优化实战-MATLAB实现
背包问题的核心在于优化值的计算和元素的取用策略。通过动态规划,可以有效解决这些问题。以下是具体步骤:1. 优化值:通过构建一个二维数组,利用递推公式计算每个背包容量下的最大价值。2. 元素取用:从最后一个元素开始,逆向查找已选元素,确定哪些物品被纳入背包。
Matlab
9
2024-11-03
基于Matlab求解非线性规划问题的主程序
主程序youh3.m的设置如下:x0=[-1;1]; A=[]; b=[]; Aeq=[1 1]; beq=[0]; vlb=[]; vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')。运算结果显示:x = -1.2250,fval = 1.8951。
Matlab
12
2024-07-21
MATLAB实现模拟退火算法解决线性规划问题
介绍了MATLAB实现的模拟退火算法代码,适用于各类线性规划问题的求解。算法通过模拟物理退火过程,以随机扰动和概率接受机制来寻找问题的最优解。代码结构简洁,可根据实际问题进行调整优化,以实现全局最优或近似最优解。
代码实现步骤:1. 初始化温度和解的初始值2. 通过温度控制变化范围,生成新解3. 计算新解与旧解的差值,根据差值决定是否接受新解4. 随着迭代次数增加,逐渐降低温度5. 最终输出最优解。
Matlab
10
2024-11-06
使用Python实现模拟退火法解决线性规划问题
编写Python代码,利用模拟退火算法解决线性规划问题的方法。
算法与数据结构
12
2024-09-14