实时数据管理

当前话题为您枚举了最新的 实时数据管理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

实时数据处理工具——Storm高效处理实时数据流
Storm,作为一种实时流处理框架,自2016年以来一直在业界广泛应用。其高效处理实时数据流的能力,使其成为许多大型数据处理系统的首选工具之一。
GoldenGate实时数据应用策略
GoldenGate实时数据应用关键策略 确保数据完整性 降低数据延迟 提高数据可用性 简化数据管理 保护数据安全
全球及中国疫情实时数据
该数据实时统计了全球及中国各省市2020年以来的疫情情况。
Talend实时数据处理Demo
Talend 的实时数据 Demo 还挺实用的,主要是基于官方的Talend Big Data Insights Cookbook做的实战场景。你要用到的是Real-Time Big Data Platform,注意哈,这不是开源版本,需要去官网下载 IDE。不过你懂的,国内访问慢,所以我就把资源搬过来了,方便直接用。 配置部分讲得比较细,包括数据接入、流程、实时推送等。对做实时流和大数据的同学来说,还挺有参考价值的。是你在用Kafka或Spark Streaming搞事情的时候,看这个文档会少踩不少坑。 如果你刚接触 Talend,建议先过一遍文档,再结合下面这些相关文章来拓展理解。比如这个
Kafka 0.11.0.3实时数据流平台
Kafka 作为流媒体平台,最大的特点就是可以实时地大量数据流。它的三大核心能力:发布和订阅数据流、持久化存储、实时数据流,适合需要高吞吐量和低延迟的场景。比如,你需要在多个系统间传输大量的实时数据,或者实时数据流的转换和反应,Kafka 都能轻松胜任。你可以搭建一个高效的实时数据管道,或者构建一个响应式的流媒体应用,Kafka 都能强有力的支持。其实,Kafka 的应用挺广泛的,从金融到物联网,几乎无所不在。嗯,如果你之前没接触过流媒体平台,Kafka 是个不错的入门选择哦。它的生态圈也蛮强大的,不仅有各类集成工具,还能和大数据平台如 Spark、Hadoop 无缝配合。
Spark Streaming实时数据处理详解
Spark Streaming是Spark核心API之一,专注于支持高吞吐量和容错的实时流数据处理。随着数据技术的不断演进,它在实时数据处理领域展现出强大的能力和应用潜力。
宜信实时数据平台优化方案
实时数据平台技术架构的优化是当前亟需解决的重要问题。在数据处理和分析方面,宜信实时数据平台正在不断优化其技术框架,以提升数据处理效率和分析精度。
Storm实时数据处理技术详解
本书详细介绍了基于Storm的开发环境搭建和实时系统测试的实用方法及实战案例,以及应用最佳实践将系统部署至云端的方法。你将学习到如何构建包含统计面板和可视化功能的实时日志处理系统。通过集成Storm、Cassandra、Cascading和Hadoop,了解如何建立实时大数据解决方案用于文字挖掘。书中涵盖了利用不同编程语言在Storm集群中实现特定功能,并最终将解决方案部署至云端的方法。每一步都应用了成熟的开发和操作实践,确保产品交付的可靠性。
CrateDB实时数据处理数据库
专为机器数据打造的 SQL 数据库系统 CrateDB,简直是你搞实时监控和日志时的得力助手。它用 SQL 的方式结构化和非结构化数据,查询速度快得飞起,插入性能也不拉胯。比如你在做 IoT 项目或者大规模日志系统,CrateDB 上手真不费劲,查询、聚合、分区都顺。你甚至能把 JSON 直接丢进去,还能查它里的属性,不香吗?自动扩展做得挺不错,集群加节点就能自己搞定数据分布,省了不少麻烦。而且它支持各种 JOIN 操作,跟 Elasticsearch 比起来,功能丰富了不止一星半点。最让我喜欢的是它的实时写入和查询性能,每秒几万条数据进来都不怕,响应还快,系统还能自愈,这稳定性也太让人放心了
Flume助力Spark Streaming实时数据处理
Flume结合Kafka和Spark Streaming,通过推拉模式高效地传输和处理实时数据。