规则生成
当前话题为您枚举了最新的 规则生成。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
从决策树生成规则集
可以指定选项将决策树转换成规则集:
规则集名称:指定新生成规则集节点的名称
创建节点位置:选择新生成规则集节点的位置,可以选择工作区、GM选项板或两者
最小实例数:指定生成的规则集中保存的规则的最小实例数,低于指定值的规则将不显示
最低置信度:指定形成的规则集中保存的规则的最低置信度,低于指定值的规则将不显示
数据挖掘
16
2024-05-12
MATLAB不规则网格生成与绘制算法
在 MATLAB 中,不规则网格时,有时需要自己动手定制一些方法,而不是单纯使用meshgrid。像IrregularMeshGridXboundaryYBoundaryNxNyKeepPointsPlotBOOL这种实例,就挺适合这类问题。它能你创建二维不规则网格,是在复杂数据时,像地理信息系统、医学成像等领域都能派上用场。程序里的算法用到了delaunay或voronoi,从散乱的数据点生成三角网格或者 Voronoi 图,适合不均匀分布的数据。Xboundary和Yboundary分别设定了网格的 x 轴和 y 轴的边界,确保你能精确控制网格的范围。KeepPointsPlotBOOL则
Matlab
0
2025-06-11
生成的规则集汇总页签-Clementine应用指南
生成的规则集汇总页签整理了规则集模型生成的结果,以方便进一步分析和使用。
数据挖掘
14
2024-04-30
基于遗传算法的数据挖掘规则生成系统评价
利用遗传算法优化数据挖掘算法,提高信息挖掘效率。
数据挖掘
12
2024-05-20
模糊关联规则格规则提取方法
模糊属性的数据库你是不是也头大?传统 Apriori 虽然经典,但一上来就给一堆频繁项集,真心不好消化。模糊关联规则格这个思路就蛮不一样的,它是把模糊概念格和关联规则搅一块,搞出了个既能动态构建又能精炼规则的办法。节点和属性项集是一一对应的,这样一来你在构建格的时候,逻辑也更清晰了,是针对动态数据库,增删改数据的时候,不用每次都重新挖一遍规则,节省不少时间。而且,它不像 Apriori 那样死板,需要频繁扫描数据。模糊规则格更像是“边建边挖”,效率还不错,冗余规则少,对用户友好度也高。如果你做的是模糊数据挖掘、个性推荐或者是症状类的,真的可以试试。想补一下相关基础知识的,也可以看看这些文章:A
数据挖掘
0
2025-06-14
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
12
2024-04-30
生成规则集模型-数据挖掘原理与SPSS-Clementine应用宝典的应用
生成规则集模型的节点代表了由关联规则建模节点(Apriori or GRI),或生成C5.0节点,或C&RT节点发现的规则,用于预测特定输出字段。未精炼的规则节点生成的规则集节点可以在流中生成预测。用户可通过图标将规则集节点模型加入流中,并通过右键点击流选择节点放置位置。连接数据后,用户可以使用规则集节点模型进行预测,输入数据需与训练数据相同。执行包含规则集节点的流时,该节点将添加两个新字段,存放预测值和置信度。关联规则集的预测字段前缀为$A-,置信字段前缀为$AC-。C5.0规则集的预测字段前缀为$C-,置信字段前缀为$CC-。C&RT规则集的预测字段前缀为$R-,置信度字段前缀为$RC-。
数据挖掘
9
2024-09-13
列名限定规则
为了避免歧义,WHERE子句中列名需要以表名前缀进行限定。表名前缀可以提高查询性能。对于表中不同的列名,可以使用别名进行标识。
Informix
20
2024-05-28
选择“排序规则设置”。
选择“排序规则设置”。
SQLServer
17
2024-05-01
Cobar规则优化指南
阿里巴巴公开了一份名为《Cobar规则 - Alibaba Open Sesame.pdf》的资源下载文件,帮助用户优化Cobar数据库的使用规则。该指南详细介绍了如何调整和优化Cobar数据库的规则以提高性能和效率。通过遵循这些优化建议,用户可以更好地管理和利用其数据库资源。
MySQL
12
2024-07-17