均值检验

当前话题为您枚举了最新的 均值检验。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

当方差异质时的均值相等近似检验 - Matlab开发
Games-Howell方法用于对来自正态总体的均值进行近似检验,特别是当方差不等时。它采用带有特定加权自由度(df')的Tukey学生化范围及基于均值方差均值的标准误差。该方法通过Games和Howell的程序比较成对方法之间的差异。对于统计检验,该函数调用文件qTukey.m(输入数据矩阵[1=yes(默认); 2=否,如果不是则需要提供统计矩阵]和显著性水平,默认为0.05)来输出每对均值差异的详尽统计分析表格。
SPSS统计分析基础教程总体均值的检验方法
某厂根据经验得知,加工的零件椭圆度渐近服从正态分布,总体均值为0.081mm,总体标准差为0.025mm。现使用新机床加工200个零件,测得椭圆度均值为0.076mm。以α=0.05水平检验新机床加工零件的椭圆度总体均值是否与以前有显著差异。
MATLAB数据分析中的单一正态总体均值检验
(一)MATLAB数据统计与分析描述 在数据分析中,单一正态总体均值检验是一种常用的统计方法,用于验证样本数据是否来自于特定均值的总体。该方法利用MATLAB工具进行参数检验,通过数值分析和假设检验来评估数据的显著性和统计意义。
多重均值比较
对四种颜色下的总体的均值进行多重比较,以确定它们之间是否存在显著差异。
方差未知条件下两个正态分布总体均值差异的检验方法-MATLAB学习资源
在方差未知的情况下,利用MATLAB的ttest2函数对两个样本的均值差异进行了检验。
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
方差未知情况下两个正态总体均值差的检验方法及其MATLAB应用
使用MATLAB的ttest2函数,针对两个样本的均值差异进行了方差未知的t检验。
均值偏移相关资料
基于均值偏移算法的MATLAB聚类程序 均值偏移基本原理、算法和应用 均值偏移图像分割程序 均值偏移目标跟踪MATLAB程序 基于均值偏移的图像分割MATLAB程序 均值偏移算法源代码和演示图片 均值偏移目标跟踪程序 小波变换MATLAB程序 均值偏移算法聚类程序 均值偏移算法详解和MATLAB源码 均值偏移算法跟踪代码及卡尔曼滤波处理 均值偏移算法聚类程序 均值偏移跟踪算法及C++源码 均值偏移跟踪算法MATLAB实现 均值偏移图像分割MATLAB源码 均值偏移卡尔曼目标跟踪编译程序 均值偏移图像平滑MATLAB实现 均值偏移目标跟踪MATLAB实现 均值偏移跟踪算法C++源代码 基于均值
深入k-均值聚类
这篇论文深入探讨了k-均值聚类算法,涵盖了其核心原理、算法步骤以及应用场景。此外,还分析了k-均值算法的优势和局限性,并讨论了如何优化算法性能,例如选择合适的k值和初始聚类中心点。
Matlab实现K均值与模糊C均值聚类及其可视化
使用Matlab对随机生成的数据进行聚类分析,分别采用K均值聚类和模糊C均值聚类方法。 K均值聚类:* 距离计算方法:默认采用欧式距离(sqeuclidean),可选用曼哈顿距离(cityblock)、余弦距离(cosine)、相关系数距离(correlation)以及汉明距离(hamming,仅适用于二分类变量)。* 可选参数:'Streams'和'UseSubstreams',用于设置数据流,需重新设置数据。* 输出结果:* 各变量的簇心位置;* 簇内点到质心距离之和;* 各点在不同距离计算方法下到质心的距离;* 基于不同距离计算方法的聚类结果;* silhouette系数用于评估聚类合理