证据理论

当前话题为您枚举了最新的 证据理论。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

DS证据理论决策冲突合成规则
黑白风格的 DS 证据理论,挺适合搞规则合成和冲突的场景。你要是研究像防火墙规则优化、数据挖掘啥的,点进来看看挺值。里面那套合成规则讲得蛮清楚,思路也比较系统。嗯,尤其是你遇到多源信息决策冲突的时候,参考这个真能省不少事。
DS证据理论Matlab代码实现DS_fusion.m
DS证据理论Matlab代码实现:DS_fusion.m,这是一个简单的D-S证据理论融合代码,经过注释和优化,适用于独立的单一命题。附件包括m文件代码: function x=DS_fusion %功能:融合x,y两行向量% x,y的格式形如[m1 m2 m3, ... , mk, m] %要求m1 m2 m3 ...之间互相无交集% m可不为0,表示不确定度% m肯定是0 [nx,mx]=size; if 1~=nx     disp;     return; end [ny,my]=size; if 1~=ny     disp;     return; end if mx~=my  
D-S证据理论算法的MATLAB编写及简易实现
D-S证据理论的MATLAB算法已被设计为简单的函数形式,用户只需输入相应参数即可使用。如果需要进一步改进,仅需进行少量修改。
D-S证据理论算法的MATLAB实现及优化
D-S证据理论的MATLAB实现算法已经以函数形式编写,用户只需输入参数即可轻松使用。如果需要改进,仅需进行少量修改。
交通大数据理论与应用探讨
随着信息通讯技术的飞速发展,各行各业产生了大量数据,促使数据挖掘这门新兴学科的兴起。数据挖掘从海量数据中挖掘出潜在的、先前未知的信息与关联,建立可支持决策的模型与工具,为预测性决策提供支持。在交通领域,大数据应用广泛,如利用手机信令数据分析城市人口与交通出行特征,优化交通规划;利用网约车数据优化路网流量与信号配时方案,提升交通控制效率;多源数据整合实现全面的交通管理与优化。
离散化与概念分层助力大数据理解
离散化将连续数据划分区间,用区间标号取代实际值;概念分层用高层概念替代低层属性值,概化数据。通过概念分层,数据细节虽有所损失,但概化后的数据更具意义和可解释性,同时节省存储空间和I/O开销。
Spark理论详解
这本书是目前国内唯一的中文资源,对学习Kettle的朋友和研究ETL的专家都有很高的参考价值。
理论Oracle指南
想学习理论的人必须先掌握理论,因为理论是实践的基础。
Insight to DataMining理论与实践
《洞察数据挖掘:理论与实践》是一本适合入门的书,内容挺全面的,涵盖了从数据预到机器学习的各个方面。比如说数据清洗、特征选择,还有一些常用的机器学习算法,像决策树、支持向量机、K-means 聚类都讲得挺清楚的。如果你是做数据或者机器学习的,这本书真的挺实用,尤其是配合里面的光盘,操作起来更直观。书里还了多实用的工具,比如说Weka,用它可以轻松进行数据和建模。,这本书挺适合新手入门的。你可以通过实际的案例来深入理解每个概念,学到的知识不止停留在理论层面。书中的数据集和实例,结合实际操作,能你更好地理解数据挖掘的技巧。关键是,它起来不复杂,虽然涉及的内容多,但都有条理。如果你想把数据挖掘应用到实
规范化理论综述
在数据库理论中,规范化是一项关键工作。它涵盖了属性集闭包的计算,函数依赖集的应用,以及关系候选码的识别。通过分析属性在函数依赖中的位置,我们可以将属性分为左部、右部、左右两侧及非依赖部分。规范化理论的BCNF(Boyce-Codd Normal Form)标准也是关系数据库设计中的重要基础。