信用风险评估
当前话题为您枚举了最新的 信用风险评估。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
信用风险评分卡研究
使用 SAS 语言从头到尾详细介绍评分卡开发与实施,附带 SAS 宏代码示例。
数据挖掘
16
2024-05-25
SAS信用风险评分卡建模指南
为评分卡和相关模型构建提供详细说明,辅以完整的SAS宏代码,实用且易于理解。
数据挖掘
20
2024-04-29
数据挖掘助力银行信用风险管理
数据挖掘技术为银行信用风险管理提供了强大的工具,通过分析客户财务、行为数据,识别高风险客户,建立风险模型,采取针对性措施,有效降低信贷损失,提高银行收益性。
数据挖掘
15
2024-05-15
系统风险评估和分析框架MATLAB开发
此脚本计算和分析以下系统风险度量:组件测量如Kritzman等人的AR(吸收率)(2010),Allen等人的CATFIN (2012),Kinlaw & Turkington (2012)的CS(相关意外),以及Kritzman & Li (2010)的TI(湍流指数)。此外,还包括主成分分析连通性措施如DCI(动态因果指数)、CIO(“进出”连接)、CIOO(“进出-其他”连接),以及网络中心性指标如介数、度数、接近度、聚类。
Matlab
9
2024-08-09
诺福克市沿海洪灾风险评估代码解析
代码解析:诺福克市沿海洪灾风险评估
本项目包含Ruckert等人研究中使用的分析代码,用于评估弗吉尼亚州诺福克市沿海洪灾风险预测的差异性。代码主要使用R语言编写,部分文件使用Matlab语言提取数据。
研究重点
分析诺福克市公开的沿海洪灾风险预测数据,包括海平面上升和风暴潮。
对比不同预测数据,识别差异来源。
提取并转换数据,确保不同预测数据的可比性。
分析方法
数据获取: 从公开渠道或个人沟通获取代码和数据集。
识别背景条件: 分析预测数据的背景条件、假设和方法,例如测量单位、水位基准、基准年和本地化方法。
数据转换: 将数据转换为统一格式,以便进行比较。
代码结构
项目目录包含复现
Matlab
16
2024-05-06
基于SAS平台的信用风险评分卡研究方法与应用
信用风险评分卡概述
信用风险评分卡是一种金融行业中常用的工具,通过一系列量化指标将复杂的信用评估过程简化为单一分数,帮助金融机构更快、更准确地决策。
SAS平台在评分卡开发中的优势
SAS(Statistical Analysis System)作为专业的数据分析平台,在数据挖掘、预测分析和商业智能方面具有显著优势,尤其在处理大数据和提供丰富的统计方法上,包括回归分析、聚类分析和时间序列分析。这些特点使其特别适合用于信用风险建模。
评分卡构建流程
数据收集:收集客户的基本信息、财务状况和信用历史等数据。
数据预处理:清洗数据,处理缺失值和异常值,并进行标准化,便于后续分析。
变量选择:通
算法与数据结构
16
2024-10-29
古物掠夺风险评估:基于拍卖数据的量化分析
艺术市场的隐秘性使得发展中国家的文物掠夺和贩运难以评估。由于缺乏来源国交易的直接信息,拍卖销售为我们提供了古物和原始艺术品的市场价值和交易量的参考。拍卖行公开发布拍卖结果,并允许通过网站访问销售档案。在线访问销售档案可以创建大量关于世界各地拍卖的成交价数据。销售档案还包含艺术品的详细描述,其中可以识别艺术品的地理来源。通过对成交价格和原产地的销售档案进行数据挖掘,可以按来源国分析市场价值。这种分析评估了相对市场价值,从而有助于评估跨发展中国家掠夺的相对风险。
数据挖掘
16
2024-05-12
客户信用风险检测与预测数据科学与机器学习案例分析
这个项目源自暑期实习,所有代码和数据均公开,供数据分析初学者学习。项目通过描述性统计分析和数据处理,包括分类变量重编码、异常值识别和缺失值填补。模型方面采用了逻辑回归、glmnet惩罚逻辑回归、支持向量机等,并绘制了ROC曲线和混淆矩阵进行可视化。建议进一步尝试其他模型如分类树、随机森林、集成模型和神经网络以改进模型性能。
数据挖掘
12
2024-07-18
PWM整流器的风险评估及其控制策略详解
一、关于PWM整流器的风险评估与控制,首要考虑的是如何划分风险等级。目前常见的划分方法包括三级、四级和五级。三级风险分为低、中、高三类。大多数交易属于低风险,可直接放行而无需拦截。中风险交易需要进一步验证操作人身份后方可放行。高风险交易则需立即拦截。四级风险增设中高风险级别,除完成增强验证外,还需管理人员人工核实通过。五级风险增设中低风险级别,先放行交易,但需管理人员事后核实。若核实出现问题,需通过人工手段进行退款或调整用户风险等级。
算法与数据结构
6
2024-10-15
基于层次分析法的矿井火灾风险评估模型构建
传统的矿井火灾评价方法过于依赖专家经验,缺乏客观性和系统性。本研究通过分析35起矿井火灾事故案例,确定了煤层自燃等级、人员素质、通风管理、消防系统、安全管理、可燃物管理和设备防爆等7个影响火灾风险的关键因素。利用层次分析法建立权重模型,并结合数据处理对矿井火灾安全等级进行评估,为制定火灾预防和控制策略提供科学依据。
统计分析
23
2024-04-30