光谱降维

当前话题为您枚举了最新的 光谱降维。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB实现PCA光谱降维程序
MATLAB实现的PCA光谱降维程序,专注于光谱数据的降维处理。
基于连续投影法的光谱数据降维算法
光谱数据降维方法正在不断发展,其中连续投影法作为一种重要技术,被广泛应用于光谱数据处理领域。该方法能有效地减少数据维度,提升数据处理效率和分析精度。
数据降维Aotucoder优化
算法自编码是一种数据降维工具,特别适用于Matlab环境中的优化。
Matlab实现LLE降维算法
使用Matlab实现的LLE算法,该方法可以对高维数据进行有效的降维处理。LLE(局部线性嵌入)是一种基于非线性降维的算法,能够在保留数据局部结构的同时,减少数据的维度。通过计算每个数据点的局部邻域关系,LLE将这些数据映射到低维空间,保持数据的局部几何特性。 数据预处理:加载并规范化输入数据。 构建邻接矩阵:计算每个点的最近邻。 计算重构权重:通过最小化重构误差计算每个点的权重。 降维:通过求解特征值问题得到低维表示。 这段代码可以帮助用户快速实现LLE算法,进行数据降维,方便进行后续的数据分析与可视化。
高光谱汽车图像分析高光谱汽车显微镜和光谱工具箱的应用
高光谱CARS显微镜和光谱工具箱使研究人员能够方便地分析他们的数据。该工具箱专注于图像融合、去噪和光谱学的研究与开发。
主成分分析:降维利器
想象一个高斯分布,它的平均值位于 (1, 3),在 (0.878, 0.478) 方向上的标准差为 3,而在正交方向上的标准差为 1。黑色向量表示该分布协方差矩阵的特征向量,其长度与对应特征值的平方根成比例,并移动到以原始分布平均值为原点。 主成分分析 (PCA) 是一种强大的降维技术,广泛应用于多元统计分析。它通过识别并保留对数据方差贡献最大的主成分,在降低数据维度的同时最大程度地保留数据信息。
光谱数据预处理
该 MATLAB 源码包含光谱读入、降噪和去背景一体化功能,适用于多种光谱处理任务,例如拉曼光谱分析。
34种数据降维方法代码
34种数据降维方法代码.zip
matlab的LE降维算法代码.zip
matlab的LE降维算法代码.zip
优化光谱分析GUI界面-光谱分析软件.zip
这几天我重新修订了一个之前编写的小GUI界面,使用guide重新设计,创建了一个光谱分析软件。在开发过程中遇到了多个挑战,但也取得了丰富的经验。现在分享这个程序,附带两个txt文件,包含光谱仪的数据输出,可供测试使用。