datasets

当前话题为您枚举了最新的 datasets。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Mining_Massive_Datasets_Algorithms
本书重点介绍了用于解决数据挖掘中关键问题的实用算法,甚至可以在最大的数据集上使用这些算法。
Mining Massive Datasets Overview
Mining of Massive Datasets is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book is designed for undergraduate computer science students with no formal prerequisites. Most chapters include further reading references for deeper exploration. It
Key Insights from 'Mining of Massive Datasets'
关于《海量数据挖掘》的关键知识点 一、书籍背景与目标 《海量数据挖掘》由 Anand Rajaraman、Jure Leskovec 和 Jeffrey D. Ullman 编著,最早用于斯坦福大学的“Web Mining”课程,专为高级研究生和高年级本科生提供深度数据挖掘知识。内容集中于处理大规模数据集的算法,涵盖分布式计算、数据流、相似性搜索等技术。 二、书籍主要内容 本书从算法导向的视角切入大数据处理,以Web数据和相关应用为案例,详细讨论了以下关键技术: 1. 分布式文件系统与MapReduce- 分布式文件系统:介绍了如何使用 Hadoop HDFS 等系统来管理大规模数据。- Ma
Spark SQL, DataFrames以及Datasets编程指南.pdf
《Spark官方文档》详细阐述了Spark SQL,DataFrames以及Datasets的编程方法与应用技巧。内容涵盖了基础操作、高级功能、性能优化等方面,帮助读者深入理解和掌握Spark的编程模型与实际应用。
Mining of Massive Datasets第二版数据挖掘
英文原版的《Mining of Massive Datasets》还挺适合前端开发者了解点大数据知识的。尤其是你做数据可视化、需要搞点数据预啥的,翻一翻还挺有启发。讲得比较接地气,虽然是讲大数据算法,但有不少图示和例子,像 MapReduce、PageRank 这些,讲得还算清楚,不会让人看着头疼。你要是搞前后端结合的项目,懂点底层原理,交流也更顺了。几个扩展资源也值得看看,像《大数据挖掘技术》那个 PDF,内容比较实在,另外像Overview文档也适合快速过一遍。建议你边看边记下关键点,比如MinHash、Locality Sensitive Hashing这些在推荐系统里都用得上。对了,有
大数据挖掘技术Minning of Massive Datasets.pdf
Minning of Massive Datasets.pdf是一本优秀的资料,涵盖了大规模数据挖掘及其应用mapreduce技术。