电信用户
当前话题为您枚举了最新的电信用户。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
电信用户流失分析项目构想
本项目选择WA_Fn-UseC_-Telco-Customer-Churn.csv数据集进行用户流失分析。该数据集包含7043条用户记录,涵盖21个字段信息,其中包含20个用户特征字段以及1个目标特征字段,用于刻画用户是否流失。
统计分析
14
2024-05-23
电信用户行为日志数据集
该数据集包含80,000条数据,分为5个维度,可用于大数据分析。
统计分析
14
2024-05-16
预测电信用户流失的数据集
这份数据集专注于预测电信用户可能发生流失的情况。它包含了广泛的用户数据和相关变量,为分析和预测流失行为提供了重要资源。数据集的详细内容和结构使其成为研究和实践中不可或缺的工具。
数据挖掘
11
2024-07-18
电信用户K-均值聚类分析数据集
该数据集提供了电信用户聚类分析的应用场景,通过K-均值聚类算法对电信用户进行分组,用于分析不同用户群体的消费行为和偏好。
数据挖掘
13
2024-04-30
基于机器学习的电信用户行为聚类分析
频繁模式的聚类有效性方法,蛮适合搞用户行为的你。基于机器学习的用户行为方法,是那种用频繁模式来评估聚类效果的方式,真的挺有意思。它不是单靠传统的相似度或者距离来评估,而是更偏逻辑推理那一挂——看起来就聪明的样子。用了自适应聚类算法,还能自动帮你选最合适的聚类参数。就像你写代码时变量名起得刚刚好,一下就顺了。响应也快,聚类结果也靠谱,用在移动业务数据上用户行为,挺实用的。嗯,要是你对电信业务数据感兴趣,或者你在搞用户画像、数据挖掘这块,这套方法可以直接拿来做实验。用起来没那么烧脑,概念清晰、实操部分也不复杂。推荐几个关联资源你可以顺便看看:聚类算法在数据挖掘中的应用 讲得蛮清楚,还有 社交网络行
算法与数据结构
0
2025-06-16
获取微信用户openid的数据库查询
查询数据库以获取从微信回调返回的用户openid。
SQLite
10
2024-07-13
电信业数据挖掘用户分析
整体用户包括正常用户和预警用户,细分为高价值和低价值用户。预警用户按价值高、中、低进行分级,同时根据离网倾向和协议到期月份进行分层和分期。用户预警分为高预警、中预警、低预警和无预警。协议捆绑用户根据剩余期限划分为≤3个月和>3个月。共计27个基础分组,实际应用中可选择部分内容或整合部分分组。用户细分建议依据具体需求进行调整。
数据挖掘
12
2024-07-12
基于用户信用的协同过滤技术的创新应用
探讨了基于用户信用的协同过滤技术,这是推荐系统领域的一种创新方法。随着信息爆炸性增长,从海量数据中提取用户有用且可靠的信息变得至关重要。推荐系统因其在电子商务等领域的显著成效而备受关注。详细解析了协同过滤算法的基本原理和基于用户信用的扩展,强调了其在提高推荐准确性和解决冷启动问题方面的潜力。
数据挖掘
8
2024-10-20
新西兰电信简介-Oracle数据仓库用户案例改写
新西兰电信,作为新西兰最大的综合电信运营商,已经在新西兰和澳洲积累了超过210万用户。公司拥有6900多名员工,总资产达83亿新西兰元,年收入高达55亿新西兰元。业务涵盖市话、长途、移动、互联网、宽带及增值业务。
Oracle
9
2024-09-26
信用卡客户信用评价数据挖掘方法分析
以对商业银行信用卡历史客户数据为研究对象,介绍了数据挖掘方法中决策树C4.5算法和关联规则Apriori算法的应用,并通过weka软件进行实证分析,从而为银行信用卡客户信用程度评定提供了决策支持。
数据挖掘
14
2024-10-31