多指标决策

当前话题为您枚举了最新的 多指标决策。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

时序混合多指标决策模型
时序混合多指标决策是一种通过结合不同指标、时序数据和决策树模型来优化决策过程的技术。你可以利用这种方法一些复杂的多变量决策问题。其实,相关的资料和代码资源都挺好用的,比如有关于决策树属性选择的度量、时序数据异常检测等方面的内容。如果你对这些技术感兴趣,pyculiarity就能你时序数据异常检测,而tinyxml则是时序模式的中文指南。你可以参考这些资源来进一步深化对时序数据和多指标决策的理解。此外,还有一些实际的应用实例,比如城市轨道客流的时序数据,也可以你在实际项目中应用这些技术。如果你在时序数据或多指标决策模型时遇到困难,参考一下这些文章和代码,会给你带来一些新的思路哦。
决策树属性选择的度量指标
决策树的构建过程中,属性选择至关重要。信息增益和Gini系数是两种常用的属性选择指标。信息增益,作为决策树常用的分支准则,通过计算属性划分前后信息熵的变化,选择信息增益最大的属性进行节点划分。Gini系数则用于度量数据集的纯度,其值越小,数据集纯度越高。
决策树算法EMR测试分类指标
决策树算法在各种场景中都挺好用,比如金融风险评估和医疗诊断。它用树形结构分解复杂问题,看起来既直观又专业。比如说,你想预测客户的借款违约概率,决策树能根据客户数据给出清晰的判断逻辑,还能数值型和分类数据。优点蛮多,尤其是对新手也友好,用来学习分类模型挺不错。如果你刚接触机器学习,决策树是个入门好帮手,稳健性强、代码实现也简单,强烈推荐!
多DT_Learning使用新目标学习指标的DT Matlab代码
Matlab代码DT_learning.m、gradient_m.m和gradient_w.m用于基于新目标对MNIST数据集进行分类的多DT学习。Tree_Growing.m是一个递归函数,使用提议的目标应用ID3算法进行树的生长。
Kyligence Zen智能管理与决策平台供应链场景数据集和行业指标模板.zip
Kyligence Zen基于其核心OLAP能力打造,专注于智能指标驱动的管理和决策平台。即刻访问https://cn.kyligence.io/zen/开启试用,或了解更多有关智能指标管理的内容。供应链场景数据集包含一个CSV文件supply_chain_management.csv,通过Kyligence Zen导航菜单的“数据”中的新建-上传CSV文件可完成数据源创建。供应链行业指标模板包含一个YAML文件supply_chain_metrics.yml,通过Kyligence Zen导航菜单的“指标”中的新建-导入YAML文件可完成指标创建。关于Kyligence,由Apache Ky
分类方法评价指标
在数据挖掘中,衡量分类方法优劣的指标多种多样,以下列举几项关键指标: 1. 预测准确率:- 指模型正确预测结果的比例,是评估分类模型最直观的指标。 2. 模型构建时间:- 构建模型所需时间,体现算法效率。 3. 模型使用时间:- 使用模型进行预测所需时间,影响模型实际应用效率。 4. 健壮性:- 模型抵抗噪声数据和缺失值干扰的能力,体现模型稳定性。 5. 可扩展性:- 模型处理大规模数据集的能力,决定模型适用范围。 6. 可操作性:- 模型规则易于理解和应用的程度,影响模型在实际应用中的可解释性和可操作性。 7. 规则优化:- 模型规则的简洁性和优化程度,影响模型的效率和可解释性。 8. 决策
抛物线SAR指标
该项目提供了一个在 MATLAB 中实现抛物线SAR指标的功能,并将指标可视化,叠加在烛台图上。
指标正态检验问题
使用大数据正态检验能为数据处理提供参考。如果您对数据处理还有疑问,欢迎留言。
MATLAB KDJ指标的应用
这是一个用MATLAB编写的KDJ指标,可以直接下载并放入当前文件夹使用。操作简便,欢迎大家提出改进建议。
bibliometrics文献计量指标计算
文献计量指标的自己算工具,还挺实用的。你有没有被 Google Scholar 的作者列表截断搞烦?或者遇到重名作者的数据也混进来?这套叫的小算法,思路就直接——不靠爬虫、不靠网页搜索,纯靠你的引用数数组来计算像、这样的常见指标,简单干净。 没有复杂配置,也不用填一堆字段。就一个bibliometrics(C, Y, A)函数,C是论文引用数的数组,是必填的。其他两个参数Y和A是可选的,用来扩展年份和作者信息,如果你想做得更细。 跟Publish or Perish或者 Google Scholar 比起来,它不自动抓数据,但胜在结果干净,逻辑透明。适合你自己有数据的时候,想快点出结果,不想一