商业规则

当前话题为您枚举了最新的 商业规则。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

模糊神经网络在商业规则数据挖掘中的应用
如果你正在做数据挖掘,尤其是商业规则的提取,模糊神经网络这一方法挺有用的。它结合了模糊系统和神经网络的优点,弥补了神经网络可解释性差的问题。通过建立模糊神经网络,你可以进行规则提取,同时还可以对训练好的网络进行剪裁,提取出模糊商业规则。实际应用中,这个方法更好地和挖掘数据,从而获得更精确的商业决策规则。文中也详细了关键算法的优化,给出的实例效果还不错。
商业智能概览
本指南提供商业智能的全面概述,涵盖以下主题: 商业智能简介 商业智能实施和数据仓库 商业智能项目 商业智能寻源 商业智能产品 数据通信 数据挖掘
商业智能概述
商业智能是一种信息技术应用,提升企业的决策质量和运营效率。它从大量数据中提炼出有价值的信息,并转化为可操作的知识,帮助企业制定战略决策。商业智能的出现源于20世纪80年代,随着信息管理系统的大规模应用,数据量急剧增长,市场竞争加剧,企业对更高级别的数据分析功能有了迫切需求。商业智能的发展经历了多个阶段,从方便获取数据到集中在查询报表、决策支持系统(DSS)和在线分析处理(OLAP),再到与数据仓库及其分析方法紧密相连。商业智能系统包括数据层、数据整合层、数据存储层和分析应用层。数据仓库是其关键组成部分,具有面向主题、数据集成、不可修改和时间相关等特点。商业智能的核心功能包括数据管理、数据分析、
商业数据挖掘技术的商业定义及应用
商业数据挖掘是一种新兴的商业信息处理技术,其核心在于从大规模商业数据库中提取、转换、分析和建模,以获取支持商业决策的关键数据。随着技术的不断发展,这种技术正在成为商业决策过程中不可或缺的一部分。
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
模糊关联规则格规则提取方法
模糊属性的数据库你是不是也头大?传统 Apriori 虽然经典,但一上来就给一堆频繁项集,真心不好消化。模糊关联规则格这个思路就蛮不一样的,它是把模糊概念格和关联规则搅一块,搞出了个既能动态构建又能精炼规则的办法。节点和属性项集是一一对应的,这样一来你在构建格的时候,逻辑也更清晰了,是针对动态数据库,增删改数据的时候,不用每次都重新挖一遍规则,节省不少时间。而且,它不像 Apriori 那样死板,需要频繁扫描数据。模糊规则格更像是“边建边挖”,效率还不错,冗余规则少,对用户友好度也高。如果你做的是模糊数据挖掘、个性推荐或者是症状类的,真的可以试试。想补一下相关基础知识的,也可以看看这些文章:A
Oracle商业智能详解
这本书详尽介绍了Oracle商业智能的各个方面,对于想要深入了解Oracle商业智能的读者来说是一本非常有价值的资料。
商业智能BI概述
商业智能(BI)是Business Intelligence的简称,最早于1996年提出。其定义为一种利用数据仓库、查询报表、数据分析、数据挖掘等技术,帮助企业优化决策的信息技术应用。BI系统基于数据仓库,集成了订单、库存、交易记录等数据,支持数据的预处理和ETL过程,确保数据质量。OLAP技术支持多维数据分析,数据挖掘则利用统计学和机器学习算法发现数据背后的规律。BI系统还包括报告和仪表板功能,以直观图形展示数据,支持预测分析和人工智能技术,提升决策的前瞻性。商业智能体系架构包括数据源、ETL工具、数据仓库、OLAP服务器、数据挖掘工具、报表分析工具和用户界面,全面支持企业的决策需求。
列名限定规则
为了避免歧义,WHERE子句中列名需要以表名前缀进行限定。表名前缀可以提高查询性能。对于表中不同的列名,可以使用别名进行标识。
选择“排序规则设置”。
选择“排序规则设置”。