疾病传播

当前话题为您枚举了最新的 疾病传播。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

KNN疾病预测Demo
KNN 的疾病预测 Demo,真的是初学者练手的好项目。用的是 Python,数据直接从 Excel 读,配合pandas和scikit-learn起来挺顺的,逻辑清晰、代码不多,重点都在 KNN 算法上,理解了它怎么选邻居、怎么投票,预测也就不难了。嗯,模型部分其实挺“懒”的,训练过程就是把数据记住,预测的时候再去找“最像”的邻居。 Excel 的病历数据也蛮直观的,像身高、体重、血压这些都作为特征喂给模型,如果你做过数据的话,这部分应该熟。前面数据清洗那块建议重点看下,标准化、缺失值啥的不能忽略,不然预测结果偏差挺大。 KNeighborsClassifier这个类是重点,你会看到fit和
自由空间传播路径损耗模型LOS波传播特例
在自由空间中,最简单的波传播情况是直接视距(LOS)传播,没有地球表面或其他障碍物引起的阻碍。
virusBroadcast病毒传播模拟
Java 写的病毒传播模拟项目,封装在virusBroadcast.rar里,功能挺全的,适合做建模竞赛或课程设计参考。项目用到了 SIR 模型那一套,模拟病毒在群体中怎么传播,界面也有,直观展示传播过程,点点按钮就能看到变化,比较友好。 Java 编程负责主逻辑和 GUI,数据也靠它。UI 部分用的是 Swing,看着虽然不算炫,但胜在清晰,响应也快。建模部分用了SIR模型,参数像R0、潜伏期啥的都能配置,算得还挺靠谱。 如果你对数学建模感兴趣,是对病毒传播类的模型,这份资源蛮合适的。你能看到模型是怎么一步步跑起来的,而且数据结构和算法也用得比较稳当,逻辑清晰,适合学习。 值得一提的是它的事
医学疾病与症状数据库
在信息技术领域,自然语言处理(NLP)技术至关重要,涉及计算机对人类语言的理解、分析和生成。在这个医学疾病与症状数据库中,我们利用NLP技术挖掘和处理大约1500种疾病和200多种症状的详细信息,为医疗健康应用提供强大的数据支持。这些数据可以用于广泛的研究和开发方向。NLP帮助我们从疾病描述中抽取关键特征,如病因、症状、治疗方法和预防措施等,这对医学研究者来说是宝贵的资源。结合机器学习算法,我们可以建立预测模型,根据用户描述预测可能的疾病,支持临床决策。此外,数据库还支持情感分析和公共卫生政策制定,揭示疾病流行趋势和地区分布。在数据处理中,我们严格遵守隐私保护法规,采用脱敏技术保护个人信息。医
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
SNAP小型卫星姿态传播器
小卫星项目里,姿态传播这一块总被不少人忽略,但其实它挺关键的。Smart Nanosatellite Attitude Propagator(SNAP)就是一个还不错的小工具,能帮你模拟轨道和姿态的变化情况。模块设计得比较清晰,轨道传播用的是简化的二体引力模型,轻量好上手。再加上重力梯度、磁滞阻尼、空气动力等被动稳定手段,适合做初步方案,不用一上来就动手撸复杂控制器。像那种用永磁体做磁稳定的设计、或者想知道在低轨环境下气动力到底有没有效果,这个模型都能给你点启发。而且作者也有论文支持,想深挖的可以顺着文献看下去。你要是正好在搞姿态控制,或者对被动稳定感兴趣,不妨下载跑一跑。嗯,记得在引用时带上
技术传播与地理位置分析
这项技术融合了聊天数据库和国家地理代码,为理解技术传播模式以及地域相关性提供了新的视角。
Apriori算法挖掘疾病症状关联规则
利用Apriori算法,我们可以从海量医疗数据中(例如包含1600万条记录的百万患者信息)提取疾病与症状之间的关联规则。Apriori算法通过分析频繁项集,识别出频繁共同出现的症状组合,进而揭示潜在的疾病模式。
30万+健康和疾病问题解答库
数据库包含: 标题 创建日期 浏览次数(衡量问题的热度) 病情描述 医生有用解答 「有用」字段反映了医生解答的质量。
有限差分传播方法FDBPM在自由空间中传播高斯脉冲的MATLAB开发
使用有限差分模拟在自由空间中传播1000微米的高斯脉冲。只需运行脚本,您将得到一个由以1微米步长传播的脉冲组成的表面。