敏感指标
当前话题为您枚举了最新的 敏感指标。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
漳村煤矿3号煤层突出预测敏感指标确定
基于数理统计和'三率'法,对煤钻屑瓦斯解吸指标Δh2、瓦斯涌出初速度q和钻屑量S进行敏感性分析,确定煤与瓦斯突出预测的敏感指标。
统计分析
10
2024-04-30
富含小构造煤层突出预测敏感指标及临界值研究
煤层突出预测这块,刘庄煤矿的这篇研究还挺有料的。地质区分得比较细,把正常地质区和构造异常区单独建模,预测更贴地气。用了“三率法”,还把S 值和Δh2的临界点算得明明白白——前者是 6 kg/m 和 4.8 kg/m,后者是 160 Pa 和 128 Pa。
嗯,最大的亮点其实是:预测准确率直接干到了100%,危险点一个没漏。对搞煤矿安全的朋友来说,减少排放工程量,省钱又稳,是真香系列。如果你对敏感指标的选择比较纠结,可以拿这篇当个参考模板,照着建模也不难。
顺带一提,其他几篇也挺值得一看:安顺煤矿的预测临界值研究那篇,做法也蛮类似的;还有漳村煤矿的 3 号煤层,数据挺扎实。你要是想拓展思路,也
统计分析
0
2025-06-29
煤与瓦斯突出预测敏感指标的新方法探索及应用
煤与瓦斯突出预测敏感指标的确定对安全开采至关重要。分析了传统确定方法的局限性,并提出了基于统计分析的新方法,以确定不同地质条件下的预测指标适用性。在开滦矿区的实际应用中发现,钻孔瓦斯涌出初速度指标适用于典型突出煤层,瓦斯解吸指标适用于主要瓦斯型突出煤层,钻屑量指标适用于主要应力型突出煤层。研究表明,高应力是开滦矿区控制突出的主要因素,其次是高压瓦斯,关键预测指标为钻屑量和瓦斯解吸指标。
统计分析
8
2024-08-25
大数据预测电力敏感客户
利用电力工单数据,通过熵权法、主成分分析和决策树算法,识别潜在投诉倾向客户和计划停电敏感客户。为服务资源调度和应对措施提供依据,提升服务精度和减少投诉压力。
数据挖掘
17
2024-05-25
分类方法评价指标
在数据挖掘中,衡量分类方法优劣的指标多种多样,以下列举几项关键指标:
1. 预测准确率:- 指模型正确预测结果的比例,是评估分类模型最直观的指标。
2. 模型构建时间:- 构建模型所需时间,体现算法效率。
3. 模型使用时间:- 使用模型进行预测所需时间,影响模型实际应用效率。
4. 健壮性:- 模型抵抗噪声数据和缺失值干扰的能力,体现模型稳定性。
5. 可扩展性:- 模型处理大规模数据集的能力,决定模型适用范围。
6. 可操作性:- 模型规则易于理解和应用的程度,影响模型在实际应用中的可解释性和可操作性。
7. 规则优化:- 模型规则的简洁性和优化程度,影响模型的效率和可解释性。
8. 决策
Hadoop
18
2024-05-19
敏感性分析-马氏链数模经典
当平均需求每周波动在1附近时,敏感性分析揭示了最终结果的变化规律。假设需求以泊松分布形式呈现,其均值λ随着技术进步可能增长或减少10%,导致失去销售机会的概率相应增减约12%。
Matlab
15
2024-08-10
基于MATLAB的局部敏感哈希算法实现
利用MATLAB强大的数学计算和仿真能力,可以高效地实现局部敏感哈希算法(LSH)。LSH算法通过将高维数据点映射到低维空间,并保证相似的数据点在映射后依然保持接近,从而实现快速近邻搜索。
在MATLAB中,可以使用各种工具箱和函数来实现LSH算法,例如 Statistics and Machine Learning Toolbox 提供了创建和操作哈希表的数据结构。
通过编写MATLAB代码,可以定义不同的哈希函数、距离度量方法以及碰撞处理策略,从而构建适合特定数据集和应用场景的LSH算法。
算法与数据结构
16
2024-05-25
抛物线SAR指标
该项目提供了一个在 MATLAB 中实现抛物线SAR指标的功能,并将指标可视化,叠加在烛台图上。
Matlab
21
2024-05-19
指标正态检验问题
使用大数据正态检验能为数据处理提供参考。如果您对数据处理还有疑问,欢迎留言。
算法与数据结构
13
2024-05-25
MATLAB KDJ指标的应用
这是一个用MATLAB编写的KDJ指标,可以直接下载并放入当前文件夹使用。操作简便,欢迎大家提出改进建议。
Matlab
15
2024-09-27