BI-LSTM
当前话题为您枚举了最新的 BI-LSTM。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。
注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): M
Matlab
12
2024-11-05
LSTM MATLAB实现项目
LSTM 的 MATLAB 实现项目,结构清晰、功能简单,挺适合刚接触 RNN 的朋友练手。lstm_matlab-master.rar里面是个比较轻量的示例项目,除了基本的网络搭建,你还能动手调整像隐藏层节点数、学习率这些参数,训练过程也能看到梯度的迭代细节,挺方便理解反向传播咋运作的。
项目用的是MATLAB环境,搭配深度学习工具箱,对初学者还挺友好。你只要熟点.m文件的写法,像run_example.m、config.m这类脚本一跑就能看到效果。整体流程不复杂,从数据准备到模型训练再到结果可视化,基本一步到位,连图都帮你画好。
你还能看到LSTM内部的反向传播过程,这块内容在其他项目里可
算法与数据结构
0
2025-07-02
LSTM 回报预测脚本
LSTM-ReturnPrediction.py 用于利用长短期记忆网络 (LSTM) 来预测时间序列的未来回报。LSTM 擅长处理顺序数据,使其成为预测未来趋势的理想工具。该脚本可以应用于金融或其他时间序列分析领域。
数据挖掘
16
2024-04-30
LSTM 网络与波束赋形
经济学家常用 ARMA 模型来预测时间序列,该模型适用于小数据集,并能捕捉时间序列中的记忆效应,如持久性、均值回归和季节性等。在深度学习领域,LSTM 网络可以被视为 ARMA 模型的类似物。
算法与数据结构
19
2024-05-28
【lstm预测】利用LSTM实现时间序列数据预测matlab源码
介绍了如何使用LSTM模型在matlab环境下进行时间序列数据预测的具体实现方法。
Matlab
7
2024-09-30
LSTM深度学习模型源码下载
LSTM深度学习模型源码是在深度学习领域中广泛应用的重要工具,通过使用LSTM模型,研究人员能够处理长期依赖关系。该模型在语音识别和自然语言处理等领域展示了卓越的性能。
统计分析
10
2024-08-08
EMD-LSTM风速预测模型
基于 EMD 的风速分解,加上 LSTM 的时间序列建模,这套matlab源码组合挺实用的。EMD 负责把风速数据拆成多个分量,每个分量代表不同频率的变化趋势,把这些喂进LSTM模型做预测,效果还不错,适合那种风速变化不规律的数据。
EMD的分解逻辑比较灵活,能适应不同的时间序列特性,所以不光是风速预测,像光伏、电力负载那些数据,也都能试试这套套路。而LSTM这块,源码里有模型结构的搭建和训练流程,超参数配置也比较清晰,调起来不费劲。
你会看到源码里了数据归一化、异常值过滤、模型训练验证这些常规步骤,整个流程跑下来挺顺畅的,尤其适合拿来当学习模板或者二次开发基础。如果你对风速预测、EMD 分解
Matlab
0
2025-06-29
LSTM多步多变量预测模型
多步预测的 LSTM 模型用起来真的还不错,尤其是你手上有一堆带时间标签的数据时,比如气象、股票、交通这些场景,简直太对口了。它能一次性搞定多个特征的多步预测,省心不少。时间序列的LSTM网络,厉害的地方在于它的“记忆力”——专治普通RNN容易忘事的问题。核心就三个门:输入门、遗忘门、输出门,分别决定保留什么、丢掉什么、输出什么,用起来有点像开关逻辑,挺巧妙。在多变量预测这块,它表现得还蛮稳定的。比如你要预测未来一周的温度、湿度、风速这些多维数据,只要喂给它过去一段时间的情况,基本都能给出一组还行的结果。你只要把数据整理成“输入序列”+“输出序列”的结构就行。,数据预也是个大头。什么归一化、缺
算法与数据结构
0
2025-07-05
商业智能BI概述
商业智能(BI)是Business Intelligence的简称,最早于1996年提出。其定义为一种利用数据仓库、查询报表、数据分析、数据挖掘等技术,帮助企业优化决策的信息技术应用。BI系统基于数据仓库,集成了订单、库存、交易记录等数据,支持数据的预处理和ETL过程,确保数据质量。OLAP技术支持多维数据分析,数据挖掘则利用统计学和机器学习算法发现数据背后的规律。BI系统还包括报告和仪表板功能,以直观图形展示数据,支持预测分析和人工智能技术,提升决策的前瞻性。商业智能体系架构包括数据源、ETL工具、数据仓库、OLAP服务器、数据挖掘工具、报表分析工具和用户界面,全面支持企业的决策需求。
数据挖掘
10
2024-10-13
OLAP-BI讲坛
OLAP(联机)系统挺适合做数据,是在面对庞大的数据量时。如果你需要快速从数据中提取信息,OLAP 的多维可以帮你理清数据之间的关系,提升决策效率。它通过多维视角呈现数据,支持交互式,你可以快速切换角度,获得更多有价值的信息。其实,OLAP 不止可以在数据仓库中使用,还能与各种工具配合,比如 Kylin 或 Druid,轻松构建高效的数据平台。
不过呢,OLAP 的反应速度是个关键点,尤其是数据量庞大的时候。你需要注意选择合适的数据存储和查询方式,确保系统的性能不掉链子。如果你对数据感兴趣,可以试试结合一些开源工具,像 Kylin 或 Oracle,这些都能为你不错的支持。,OLAP 对于那些
统计分析
0
2025-06-17