理论

当前话题为您枚举了最新的理论。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Spark理论详解
这本书是目前国内唯一的中文资源,对学习Kettle的朋友和研究ETL的专家都有很高的参考价值。
理论Oracle指南
想学习理论的人必须先掌握理论,因为理论是实践的基础。
Insight to DataMining理论与实践
《洞察数据挖掘:理论与实践》是一本适合入门的书,内容挺全面的,涵盖了从数据预到机器学习的各个方面。比如说数据清洗、特征选择,还有一些常用的机器学习算法,像决策树、支持向量机、K-means 聚类都讲得挺清楚的。如果你是做数据或者机器学习的,这本书真的挺实用,尤其是配合里面的光盘,操作起来更直观。书里还了多实用的工具,比如说Weka,用它可以轻松进行数据和建模。,这本书挺适合新手入门的。你可以通过实际的案例来深入理解每个概念,学到的知识不止停留在理论层面。书中的数据集和实例,结合实际操作,能你更好地理解数据挖掘的技巧。关键是,它起来不复杂,虽然涉及的内容多,但都有条理。如果你想把数据挖掘应用到实
规范化理论综述
在数据库理论中,规范化是一项关键工作。它涵盖了属性集闭包的计算,函数依赖集的应用,以及关系候选码的识别。通过分析属性在函数依赖中的位置,我们可以将属性分为左部、右部、左右两侧及非依赖部分。规范化理论的BCNF(Boyce-Codd Normal Form)标准也是关系数据库设计中的重要基础。
VIC 水文模型讲义-理论
VIC 模型是由多所大学研究人员共同开发的大尺度分布式水文模型。它也称为“可变下渗容量模型”。
优化理论安装包
提供优化理论相关安装包,包括 cplex12.6.3、cplex12.9、cplex12.5、cplex20.10 版本,以供下载使用。
Spark 理论与 PySpark 应用
Spark 理论与 PySpark 应用 Spark 生态系统 Spark Core:Spark 的核心组件,提供分布式任务调度、内存管理和容错机制。 Spark SQL:用于处理结构化数据的模块,支持 SQL 查询和 DataFrame API。 Spark Streaming:实时流数据处理框架,支持高吞吐量、容错的流处理。 Hadoop 与流数据处理 Hadoop 为 Spark 提供分布式存储和计算基础架构,使其能够高效处理大规模数据集,包括流数据。流数据处理的特点: 实时性:数据持续生成,需要实时处理和分析。 持续性:数据流永不停止,需要系统持续运行。 高吞吐量:需要处理大量高
MongoDB理论实践与优化
开源的 MongoDB,大数据时代的“万能螺丝刀”。支持灵活的文档结构,性能也蛮不错,适合存日志、搞,或者当缓存。Mongodb 算是比较“接地气”的 NoSQL,配个 Redis 就能玩出花来。想深入了解?韩冬的《大数据之 Mongodb 的理论实践与优化》就挺合适的,讲得还挺实在,偏实战派的那种。 MongoDB的优势是啥?是无模式,插入数据不用建表定义字段,像玩 JSON 一样随意。就是性能——insert、find操作都蛮快,尤其配合索引,响应也快。还有一点,Mongo 的文档格式天然就适合复杂数据结构,比如嵌套评论、多级菜单。 对比一下,Redis适合缓存、排行榜;MongoDB更适
数据库理论综述
《数据库系统概论》是中国首部系统阐述数据库原理、技术和方法的教材,内容丰富、先进,概念准确,结构完整,语言精炼。该书曾荣获国家级优秀教材奖和全国高等学校优秀教材一等奖。《数据库系统概论(第4版)》自出版以来被多所高校采用,对推动我国数据库教育发展做出了重要贡献。全书系统全面阐述数据库系统的基础理论、基本技术和基本方法,并提供实验环境和实验指导,进一步加强了实验和课程设计等教学环节。
数据挖掘理论与实践
本书系统介绍了数据挖掘领域的知识体系和技术创新。在全面回顾前沿进展的基础上,第2版增加了挖掘流、时序、序列数据以及时空、多媒体、文本、Web数据等新内容。可作为该领域的学者、研究者和开发者的参考书,也可作为计算机及相关专业高年级本科生、研究生的教材。