区间数回归
当前话题为您枚举了最新的 区间数回归。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于支持向量机的区间数回归模型建模方法
分析了现有的精确数输入和区间数输出回归算法存在的问题,并提出了基于支持向量机的区间数回归建模方法。该方法将支持向量机从精确数回归推广到区间数回归建模,展示出在小样本训练集下良好的泛化性能,有效避免了现有算法中可能出现的下界大于上界的问题。以连续退火生产过程中冷却段出口带钢温度预测为例,仿真结果表明该算法的有效性。
数据挖掘
15
2024-08-04
区间数据离散化方法
该方法基于相似度阈值和关联度,实现区间数据离散化,提升了算法性能,经多组数据验证,效果显著。
数据挖掘
17
2024-04-30
Matlab中的分位数回归分析
这是一段包含Matlab代码的分位数回归分析,代码完备且有详细注释,还显示了运行时间。
Matlab
9
2024-09-27
金融科技视角下的QR分位数回归
随着金融科技的发展,QR分位数回归方法在数据分析中日益突出。
统计分析
11
2024-09-13
Beta分布概率密度Matlab代码-分位数回归与标量回归应用
beta 分布的概率密度的 Matlab 代码,用起来还挺顺手的,尤其是你在做分位数回归或者标量回归的时候,一些统计建模问题就方便。代码结构比较清晰,变量命名也还算规范,拿来改改就能直接上手。
强烈推荐你看一下作者的数据部分,整理得蛮全面。用的是TCGA 影像和cBioPortal 的临床数据,搞影像组学或机器学习建模的朋友应该会喜欢。而且都是现成的数据集,直接下载、跑代码都没问题。
顺便一提,里面用到了Beta 分布来建模图像强度的变化,再结合一些临床变量做关联。这一套流程做科研用合适,尤其你要发 paper 时,参考价值挺大。
建议你搭配一起看:Beta 分布概率密度函数的代码,还有Mat
Matlab
0
2025-06-15
非参数回归模型在金融时间序列中的应用
非参数回归模型在金融领域的应用真的蛮有意思的,尤其是在时间序列数据时。嗯,你知道传统的回归模型一般都得预设数据的分布形式,可是金融市场的数据常常比较复杂,完全不符合这些假设。非参数回归模型可就不一样了,它不要求你预设分布,反而能更灵活地捕捉数据之间的关系,效果挺不错的。比如,核回归和 LOWESS 这两种方法,都可以在金融时间序列中发挥重要作用。
如果你在股市收益率,尤其是像上证综指这样复杂的数据,非参数回归方法能给你带来更准确的预测结果。两者对比,核回归的效果往往更好,但在边界处会有些小波动,LOWESS 相对更稳健。所以,选择哪种方法,得看具体情况。不过,值得注意的是,金融市场数据的随机性
统计分析
0
2025-06-17
区间实根求任意函数在任意区间的所有实根-MATLAB开发
本例程利用分析方法在给定区间内查找任意函数的所有实根。通过使用Chebyshev多项式逼近函数,并采用JP Boyd提出的高效分析方法来精确定位这些根。用户需将欲求根的函数以MATLAB匿名函数形式提供,例如:FindRealRoots(@(x) besselj(1,x), a, b, n),其中n为Chebyshev展开的元素数,在区间[a, b]内计算函数besselj(1,x)的所有实根。程序运行后将显示计算所需时间,并给出原始函数图像及其在指定区间内的近似值。若结果不一致,建议增大'n'的值再次尝试。
Matlab
15
2024-08-08
重新缩放[0, 1]区间内矩阵列
输入矩阵X大小为[nsamples, ncols],输出矩阵Y中每一列的值都已重新缩放至区间[0, 1]内。示例:X = randint(100, 4);Y = rescale(X);display(min(Y));display(max(Y));
Matlab
11
2024-05-21
Z值检验与置信区间
在假设检验中,Z值检验是一种常用的统计方法。Z值的取值范围决定了假设检验的接受域和拒绝域。例如,在90%的置信水平下(α=0.1),Z值的接受域为 -1.64 到 1.64 之间。
统计分析
15
2024-04-30
线性回归
使用Python实现最小二乘法进行线性回归。
算法与数据结构
21
2024-04-30