发现技术

当前话题为您枚举了最新的 发现技术。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

时间序列主题发现技术研究论文
时间序列数据的玩法还挺多的,是做数据挖掘的时候,能不能先挖出一些高频出现的模式(也叫主题),直接影响后续效果。这篇论文主要聊的就是怎么在海量时间序列里找出这些反复出现的“时间片段”,不需要你事先知道它们长啥样。像医学监测、地震波、甚至健身追踪这类数据源里,用处可大了。用过STUMPY的同学知道,搞时间序列模式匹配有时候挺麻烦的,不是慢就是不准。论文里了一些提升效率的方法,有些还是挺好落地的,比如改进距离计算、用滑动窗口提速啥的。AutoPlait 那个自动聚类的方法也提到了,感觉可以配合你现有的数据管道玩得更溜。如果你平时做可穿戴设备、金融交易模式识别或者物联网设备日志,这类“主题发现”算法还
数据挖掘:从数据库技术到信息发现
数据挖掘技术是数据库技术不断发展的结果。数据库技术经历了从数据存储到数据查询、访问,再到实时遍历的演变过程。数据挖掘则将数据库技术推向了新的高度,它不仅能够查询和遍历历史数据,更能够揭示数据间的潜在联系,从而推动信息的有效传递。
发现数据团队文件解析
RFP提案:FindData项目名称链接到RFP:RFP类别devtools-libraries提案人:finddataio您是否同意在MIT和APACHE2许可下开放您代表该RFP和双重许可所做的所有工作的源代码?是项目简介概述互联网和区块链每天都会生成大量数据,包括由应用程序,行为和机器生成的数据。通过数据的管理和分析,我们可以发现数据中包含的巨大价值,并了解和洞察事物的内在本质。大数据已经成为人类了解世界的一种手段,数据正在不断改变人们的生活方式,经济规则,商业模式,甚至推动着整个社会和经济的创新与变革。基于全球区块链节点网络资源,创建了一个高度可配置但易于操作的数据采集机器人和数据资产
数据探索与发现.rar
数据探索--基础与技术.pdf金融软件开发必备指南压缩版.pdf中国银行业务全面指南.pdf
果粉社区 - 发现优质 iOS 应用
果粉社区 funso.com,以苹果 APP 应用为核心,利用社会化关系、机器学习和数据挖掘技术,为用户提供个性化应用推荐,帮助用户轻松找到心仪应用。我们提供最新最全的限时优惠 iOS 应用信息,数据均来源于果粉社区 funso.com。
CPM算法重叠社区发现方法
CPM 算法(Clique Percolation Method,团渗透方法)是一个蛮实用的网络社区发现算法,适用于社交网络和其他复杂网络的。这个算法的地方在于它能发现重叠社区,也就是同一个节点可以属于多个社区,这在真实世界的网络中常见。CPM 算法通过团(完全子图)来识别网络中的社区结构,如果两个团有 k-1 个节点相连,就可以认为这两个团是渗透的,进而形成一个社区。由于算法不需要事先定义社区结构,它灵活,可以自动发现网络的社区结构。适用场景广泛,比如社交网络、生物网络、合作网络等。用它来复杂网络,能你深入理解群体之间的相互关系,值得试试!
社团发现代码Matlab微小障碍物发现新框架的官方实现,ICRA
社团发现代码Matlab微小障碍物发现冯雪创作的官方Matlab实现,ICRA 2019介绍该存储库包含微小障碍物发现新框架的官方Matlab实现。这篇论文已被IEEE机器人与自动化国际会议(ICRA) 2019接受。Python/ROS的官方实现即将推出。注:此版本在原作的基础上略有改进,训练代码略有改动,ROC性能有所提升。为了提高效率,基本边缘检测算法使用结构化边缘检测[1]。系统中的模块在很大程度上得到了加速,尽管仍有很大的改进空间。在实例级评估中,IoU被定义为预测提议和真实边界框之间的交集,可以在./evaluation/Func_evaluation_DR.m找到引文。如果你觉得
数据世界的宝藏:探索与发现
深入浅出地阐述数据挖掘的核心概念,并结合实际案例讲解数据挖掘的常用技术,帮助读者掌握从海量数据中提取有价值信息的方法和工具。
数据挖掘知识发现算法
数据挖掘是从大量数据中找出隐藏的、有价值的信息。你可以想象它就像是从沙堆里筛选出宝石,虽然看起来不起眼,但经过筛选后,得到的结果常常能给你带来惊人的收获。数据挖掘和数据仓库的关系挺密切,前者是挖掘数据中的知识,后者则是存储这些数据的地方。嗯,掌握数据挖掘,你就能从海量的数据中提炼出有用的模式和规律。 如果你想深入了解数据挖掘的具体算法,可以阅读一些经典文献。比如,《数据挖掘与知识发现综述》就给出了全面的概述。而关于知识发现,《探索知识宝藏:知识发现与知识工程课件》也是不错的参考资料。 ,数据挖掘不止是一个工具,它还是一个思维方式的转变。如果你对这块儿有兴趣,可以从数据预、模型构建和评估等方面入
数据挖掘:发现未知的有效信息
数据挖掘区别于传统的查询、报表、联机分析等数据分析方式,其核心在于无需预设假设,直接从数据中挖掘信息、发现知识。 数据挖掘的目标是发现那些先前未知、切实有效且具有实用价值的信息。 先前未知意味着这些信息是预先无法预料的,甚至可能与直觉相悖。 有效性保证了信息的可靠性和准确性,能够为决策提供支持。 实用性则强调信息能够应用于实际场景,解决实际问题。 例如,一家连锁店通过数据挖掘发现看似毫无关联的商品——婴儿尿布和啤酒——之间存在着惊人的联系,这便是数据挖掘发现未知信息的典型案例。