统计与机器学习

当前话题为您枚举了最新的 统计与机器学习。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
机器学习与Spark指南
此指南提供机器学习与Spark的清晰介绍,涵盖基础概念、技术和实用示例。
MATLAB统计与机器学习工具箱用户指南
类似于折扣,某些无现金设备可以向用户提供额外的信用,例如对5.00美元账单提供6.00美元的信用。有时无现金设备可能会预先扣除销售税,导致实际信用低于REVALUE命令中的金额。大多数媒体存储信用的无现金设备都有最大允许信用额度限制。
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
模式识别与机器学习
机器学习领域必读经典,Bishop巨著,英文电子版,高清版本。
机器学习数学基础高数、线代、概率与统计详解
在机器学习领域,扎实的数学基础是必不可少的。将深入探讨高等数学、线性代数、概率论以及数理统计,这些学科为机器学习算法的构建和优化提供了关键支持。 高等数学 高等数学包括微积分、极限和导数,帮助理解机器学习中的梯度下降等优化算法。微积分提供了对函数变化率的理解,直接影响模型训练的效率和效果。 线性代数 线性代数是机器学习中的核心工具,尤其是在处理向量和矩阵运算时。特征值分解、奇异值分解等概念在降维和特征提取中扮演重要角色。 概率论 概率论是机器学习模型构建中不可或缺的一环,提供了数据不确定性和模型预测的评估手段。概率密度函数、条件概率等知识为贝叶斯模型和生成模型的构建打下基础。 数理统计 数理统
机器学习实战:工具与技术
虽然原版书籍对于刚接触机器学习的人来说可能有些挑战,但配套的Weka平台提供了一个实践学习的便捷途径。
机器学习基础与应用概览
机器学习基础知识与应用概览 一、引言 1.1 欢迎 欢迎来到斯坦福大学2014年的机器学习课程笔记。这是一份由黄海广同学整理的详尽笔记,他是一位中国海洋大学的2014级博士生。通过这份笔记,读者可以了解机器学习的基本概念、核心技术和实际应用场景。 1.2 机器学习是什么? 机器学习是一种人工智能领域的研究分支,探索如何让计算机具备自主学习的能力。通过分析数据集,机器学习算法能够自动改进其性能,无需显式编程即可实现任务。其应用包括自动驾驶、语音识别、搜索引擎等。 1.3 监督学习 监督学习是机器学习的一种类型,其中训练数据包含输入特征和对应的输出标签。常见算法包括:- 线性回归:用于预测连续值输
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。