稀疏表示分类
当前话题为您枚举了最新的 稀疏表示分类。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
MATLAB稀疏表示算法库
毕业设计的 MATLAB 算法库,内容还挺实在的。都是稀疏表示方向的经典算法,源码整理得蛮清楚,变量命名不乱,注释也到位,直接跑没啥坑。适合那种时间紧任务急的时候用,能帮你省不少调试时间。
MATLAB 的工具类源码,整理得还挺全,像OMP、K-SVD这些稀疏编码的经典算法都有,关键是配套函数都封好了,不用自己搭一堆框架,拿来即用,挺省事。
每个函数都能独立运行,调用关系不复杂。比如你要做一个图像压缩实验,直接改下路径,喂进去数据就行。测试也比较充分,能跑通。哪怕对 MATLAB 不太熟,也能快上手。
文件结构简单清晰,main.m就是入口脚本,运行逻辑都串好了。不需要翻半天逻辑才能找到主函数
Matlab
0
2025-06-15
稀疏表示问题的l1_ls MATLAB求解
l1_ls MATLAB求解用于解决如下形式的问题:最小化 ||Ax-y||^2 + lambdasum|x_i|。
Matlab
6
2024-09-30
基于两步稀疏表示的人脸识别新方法与实验
一种创新的人脸识别技术
该方法利用两步稀疏表示,有效提升人脸识别准确率。首先,通过构建稀疏字典,将人脸图像转换为稀疏线性组合形式,提取关键特征。其次,利用稀疏表示系数进行分类识别,实现高效准确的人脸识别。
实验验证与结果分析
通过在公开人脸数据库上进行实验,验证了该方法的有效性。结果表明,与传统人脸识别方法相比,该方法在识别准确率和鲁棒性方面均有显著提升,尤其在光照变化、姿态变化等复杂情况下表现出色。
DB2
14
2024-04-30
图像超分辨率matlab程序稀疏表示与正则化优化
利用Matlab开发的图像超分辨率程序,采用稀疏表示和正则化优化技术,能够显著提高图像质量。
Matlab
9
2024-09-28
稀疏表达的编程
稀疏表达的程序代码,使用Matlab验证实现,可供下载使用!
Matlab
9
2024-07-19
稀疏有效单叶稀疏三叉戟藻内酯开发
Sparseclean清除范围内小或NaN值或值的双稀疏矩阵。
Matlab
15
2024-05-13
稀疏表达的编程实现
利用Matlab验证实现稀疏表达的编程代码,可供下载使用!
Matlab
18
2024-07-26
SLEP稀疏建模工具包
稀疏建模里的神器——SLEP 工具包,你如果常在搞信号、图像识别或者搞机器学习模型压缩,那它你得试试。它其实就是一堆高效的稀疏表示算法,封装得比较利索,直接在 MATLAB 里就能跑,省事还省心。
L1 最小化、LASSO、岭回归这些常见操作它都搞定了,还有IHT那类迭代算法也能跑。甚至连高斯过程回归这种非参数方法也打包在内了,功能算是比较全的。
要用也不难,几行代码就能起飞:
%加载数据
data = load('your_data.mat');
%定义模型
model = 'l1';
%设置参数
param.lambda = 0.1;
%运行 SLEP 求解
solution = slep
算法与数据结构
0
2025-06-16
Python稀疏矩阵计算谷歌网页PageRank
利用 Python 和稀疏矩阵技术,处理谷歌公开网页数据 (http://snap.stanford.edu/data/web-Google.txt.gz),高效计算网页 PageRank 值。
算法与数据结构
16
2024-05-27
时间序列表示方法比较
李俊奎和王元珍总结了各种典型的时间序列表示方法,从多个角度分析其特点。该研究有助于理解时间序列表示的进展和应用。
数据挖掘
12
2024-05-20