目标分析
当前话题为您枚举了最新的 目标分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
目标函数
目标函数是用来衡量候选解相对于优化问题解的优劣程度的函数。在优化算法中,通过迭代地评估和比较不同候选解的目标函数值,来逐渐逼近问题的最优解。
目标函数的设计取决于具体的优化问题。它需要能够准确地反映问题的目标,并将问题的约束条件融入其中。
目标函数的选择对优化算法的效率和最终结果至关重要。一个设计良好的目标函数能够引导算法快速找到全局最优解,而一个设计不当的目标函数则可能导致算法陷入局部最优解。
Matlab
15
2024-05-30
目标区域下汇率扩散模型的统计分析
利用扩散模型研究人民币对美元汇率,比较两种模型的统计特征。通过GMM方法参数估计,发现第一种模型更适用于我国短期汇率市场。
统计分析
18
2024-05-01
图像处理与目标分析(实现图像分割和详细目标属性计算,包含用户界面)
设计程序,用于对灰度图像进行二值分割,并进行详细的目标属性计算。程序需处理包含多个目标的图像。具体实现包括:1)图像分割算法选择与实现;2)计算二值图像中所有目标区域的总面积;3)分别计算每个目标的面积和周长;4)求取每个目标的最小外接矩形及计算长宽比;5)程序设计具备用户界面。
Matlab
10
2024-09-27
利用混合高斯模型检测目标并分析运动轨迹OpenCV实现
混合高斯模型的背景建模,用来做目标检测,是真的挺稳的,是在监控视频这类背景相对稳定的场景里。OpenCV 里直接就有 cv::bgsegm::createBackgroundSubtractorMOG2() 这个接口,省事多了,调用完还能自动更新模型,响应也快。
像背景减除,重点就是区分“正常的背景”跟“突然冒出来的前景”。混合高斯模型就是用多个高斯分布来拟合每个像素的历史值,算是比较聪明的一种方式。你喂它几帧,它就开始学习背景了,后面再有新帧来,就能快分辨出变化了。
检测完了目标,如果你还想下目标的运动情况,比如轨迹、速度,那就得上光流了。Farneback 光流法是个不错的选择,OpenC
算法与数据结构
0
2025-06-24
Matlab目标跟踪实现
Matlab 的图像功能真不是盖的,做目标跟踪这种活儿还挺顺手。利用它视频帧、提取目标特征、跟踪移动轨迹,整个流程跑起来还挺流畅,适合用来做个 demo 或小项目练练手。哦对了,像那种交通监控、行人识别场景也完全能用上。
图像那块,matlab 自带的工具箱挺齐全,啥vision.ForegroundDetector、blobAnalysis都有,结合 UI 做点交互也不是难事。比如你想让用户点一下选目标,用个imshow加ginput就行,响应也快,代码也简单。
我还挖了几个不错的参考,像Matlab 图像目标跟踪这篇就挺直白,基本能跑通。还有个交通视频目标跟踪系统,场景接地气,推荐你看看。
Matlab
0
2025-06-30
Matlab图像目标跟踪
作为练习使用,这里提供了三个小文件,用于Matlab的图像目标跟踪实验。这些文件帮助用户熟悉目标跟踪技术的基本概念和应用方法。
Matlab
15
2024-07-31
mean shift目标跟踪
使用Matlab实现meanshift算法进行目标跟踪。
Matlab
14
2024-09-13
KDD CUP 98数据集-1的数据控制和目标分析
KDD CUP98数据集包含多个数据字段,以下是部分数据示例:CONTROLN,TARGET_B,TARGET_D 3,0,0 6,0,0 9,0,0 11,0,0 16,0,0 19,0,0 20,0,0 23,0,0 24,0,0 25,1,25 28,0,0 29,0,0 30,0,0 31,0,0 33,0,0 34,0,0 35,0,0 36,0,0 39,0,0 42,0,0 44,0,0 45,0,0 47,0,0 49,0,0 50,1,10 57,1,8
Oracle
12
2024-08-22
优化数据分析技术体系,精准实现数据挖掘目标
如何有效构建数据分析技术体系,实现高效的数据挖掘?这是许多企业和学术机构面临的关键问题。
算法与数据结构
11
2024-10-21
MATLAB雷达目标生成与检测的运动目标识别代码
在这个课程中,我们详细讨论了雷达在自动驾驶汽车感知中的关键角色。我们从基本原理出发,介绍了信号传播和目标响应生成的过程。进一步深入研究了实时定位目标所需的Range Doppler生成。使用MATLAB编写了生成目标场景的代码,包括FMCW波形的创建,以及使用FFT和CFAR处理技术生成距离多普勒地图(RDM)。在项目的第二部分,我们利用MATLAB的Driving Scenario Simulator进行部署,实现了多对象的跟踪和聚类分析。完成此项目需要下载并安装MATLAB,并确保环境准备就绪。详细操作步骤包括创建MathWorks帐户、下载安装程序并完成安装。
Matlab
14
2024-07-24