预训练

当前话题为您枚举了最新的 预训练。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

PyTorch FSRCNN 训练测试代码和预训练权重
PyTorch 平台上的深度学习模型,用于图像超分辨率:FSRCNN 包含网络模型、训练代码、测试代码、评估代码和预训练权重 评估代码可计算 RGB 和 YCrCb 空间下的 PSNR 和 SSIM
基于预训练模型的BP神经网络数据预测
本代码利用已训练的BP神经网络模型文件 (ANN.mat) 对新的数据集进行预测,计算预测值与真实值的均方误差,并绘制两者对比图以可视化预测结果。
BERT预训练模型bert-base-chinese中文文本处理
BERT 的中文预训练模型—bert-base-chinese,是一个实用的自然语言工具。它可以你快速进行中文文本的理解、分类、问答等任务。这个模型使用了Hugging Face Transformers库,能够通过config.json、pytorch_model.bin和vocab.txt这些文件进行 fine-tune,挺方便的。如果你对BERT的工作原理感兴趣,可以深入了解它如何通过[CLS]和[SEP]标记来文本,并生成嵌入向量。在实际应用中,它对中文文本的语义理解效果蛮不错,适合需要进行中文的项目。如果你正在做自然语言相关的项目,不妨尝试一下这个模型,是它的 fine-tune 原
特征提取器优化预训练网络中的特征提取方法
该工具允许从任何预训练的神经网络中提取图像特征,并提供功能:1. 数据加载和存储;2. 特征提取和规范化;3. 自定义模型特征管理。应用于机器学习和图像处理领域。
使用预训练模型进行乳腺癌图像分类的MATLAB代码
在乳腺癌检测中,该MATLAB代码利用预训练模型对图像进行分类。需要的前提条件包括Python 2.7和MATLAB(使用LIBSVM)。数据集来自BreakHis,使用VGG-16权重进行处理。方法包括特征提取、数据平衡处理以及使用线性SVM、多项式SVM和随机森林进行分类。
GloVe.6B.50d用于情感分析的预训练词向量与Captum结合
glove.6B.50d.zip是一个包含预训练词向量的压缩文件,主要用于自然语言处理(NLP)任务。GloVe(Global Vectors for Word Representation)是斯坦福大学开发的一种词嵌入方法,通过统计词汇共现矩阵来捕捉词汇之间的语义和语法关系。“6B”表示这些向量基于大约60亿个词汇项的大规模语料库训练,而“50d”则意味着每个词汇被表示为50维的向量。描述中的Captum是一个由PyTorch团队维护的解释性机器学习库,提供了理解模型预测行为的API,帮助可视化和解析神经网络的内部工作原理。在情感分析任务中,Captum可以洞察模型如何对特定输入进行情感分类
训练包
训练包,包含有用的训练资料。
Hadoop 2.6.5Windows预配置版
Hadoop 的 Windows 预配置版,用起来真的省心。原本 Hadoop 就是奔着 Linux 来的,Windows 上折腾起来说实话挺头疼的。好在这个 2.6.5 版本已经配好环境,下载完解压一下,按照readme一步步来,配置下环境变量,就能跑起来了。 HDFS 的文件系统和 MapReduce 的计算模型,都是 Hadoop 的两大核心。你只要搞明白,数据怎么存、任务怎么跑,基本上就能用得顺手了。像start-dfs.bat、start-yarn.bat这种命令,直接启动服务,响应也快。 启动之后,浏览器打开localhost:50070看 HDFS 状态,:8088看任务情况,图
训练流程
利用卡方检验,再次筛选特征词,降低维度至 1000 维。 采用 K 折交叉验证评估分类器性能。StratifiedKFold 用于将数据集分成 n_folds 份,分别进行验证和训练,并计算平均分类准确率作为性能指标。
Matlab预加载器在Matlab中创建和使用预加载器示例
介绍了在Matlab中创建和使用预加载器的两种类型:线性棒预加载器和两个圆形预加载器的具体方法和步骤。通过这些示例,读者可以更好地理解如何有效利用预加载器进行Matlab开发。