随机算法
当前话题为您枚举了最新的 随机算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
随机森林算法概述
随机森林算法是一种集成学习方法,由多棵决策树组成。它在分类和回归任务上表现出色,可以处理大规模数据集,并且易于并行化。该算法通过自助采样(bootstrap sampling)创建多个子集来训练多棵决策树,并在每个决策树的节点处随机选择特征,这样可以增加模型的泛化能力和准确性。随机森林算法的核心是构建多个决策树并进行组合,以获得最终的预测结果。构建单棵决策树时,采用有放回的抽样方法生成自助样本集,这意味着训练集中有些样本可能会被重复选择,而有些则可能一次也不被选中。这有助于提高模型在新数据上的泛化能力。在决策树的每个节点,随机森林算法会从全部预测变量中随机选择一部分作为候选变量,从中寻找最佳的
算法与数据结构
21
2024-11-04
MATLAB常用算法——生成随机数
此资料仅供学习参考之用。
Matlab
9
2024-09-27
随机分配算法的Matlab代码——随机性的重要性
随机分配算法的Matlab代码展示了随机性如何成为效率的关键来源。控制部分的随机化是自然策略的基本概念,通过付出小的可靠性代价显著提高效率。快速随机算法比慢速确定性算法更为可靠。LSH算法基于随机比特采样,在汉明距离中查找k个近邻,无需评估实际汉明距离值。Matlab编码技巧向量化,使用随机性算法。rbslsh在C++中的实现,优化了内存使用。仅在输入数据被修改时才透明地分配数据的临时副本。进行性能分析以提高数值计算性能。
Matlab
13
2024-07-15
期权Matlab算法实现随机梯度下降SGD
介绍了在Matlab中使用随机梯度下降(SGD)算法优化期权预算的方法。该方法是基于L. Bottou的SGD和Inria的JSGD的变体,允许用户通过接口选择任意目标函数进行优化(类似于Schmidt的minFunc)。提供的源代码和示例展示了如何使用softmax目标函数进行实现。相比于传统的梯度下降(GD)方法,SGD能够更有效地处理大规模数据集,并减少计算梯度的负担。
Matlab
14
2024-08-12
使用Matlab开发的随机奇异值分解算法
奇异值分解(SVD)是线性代数中一种非常实用的工具,被广泛应用于多个领域。随机奇异值分解则是一种能够快速计算SVD的算法。
Matlab
9
2024-07-17
Matlab中的随机森林分类算法实现
随机森林是一种集成学习方法,用于解决分类和回归问题。它通过构建多个决策树,并将它们的预测结果结合,以提高模型的预测准确性和鲁棒性。本资源提供了在Matlab环境中实现随机森林分类模型的完整代码。代码包括数据预处理、模型训练、结果评估和可视化,并配有详细注释,帮助用户理解算法细节和在Matlab中的应用。此外,还提供了样例数据集用于性能测试,以及性能评估工具帮助用户优化分类模型效果。应用指南和扩展建议则帮助用户根据需求调整模型参数,以适应不同的分类任务。
算法与数据结构
10
2024-08-12
随机森林算法肥胖预测模型及成因分析
随机森林的肥胖预测模型,数据+代码+报告都有,拿来就能跑,适合做毕设、项目复现。算法部分用了决策树和随机森林来搞多标签分类,重点是 14 个生活习惯因素对肥胖的影响,模型还能直接评估你现在的健康状况哦。数据集来自UCI,结构清晰,字段也比较友好,直接上手没啥压力。实验报告写得还挺详细,写论文的时候参考起来也方便。整体看下来,适合想练习机器学习建模、模型可解释性这类内容的朋友。如果你平时对健康预测感兴趣,或者在找靠谱点的综合项目练练手,这份资源挺值得一试的。
数据挖掘
0
2025-06-17
二维快速探索随机树算法用于路径规划
演示了二维快速探索随机树算法在路径规划中的应用。算法从一个初始点开始,随机生成并连接点,同时探索环境并向目标点移动。当算法收敛时,它将返回一条从初始点到目标点的路径。此方法适用于解决具有障碍物的复杂环境中的路径规划问题。
Matlab
8
2024-05-31
Matlab中的快速拓展随机树路径规划算法
Matlab环境下实现的快速拓展随机树路径规划算法,支持高效的路径规划和树结构拓展。
Matlab
15
2024-08-26
Matlab代码示例基于随机分箱的光谱聚类算法
Matlab交叉检验代码SpectralClustering_RandomBinning(SC_RB)提供了一种简单的方法,利用最新的随机分箱特征来扩展光谱聚类。该代码结合了内核逼近(Random Binning)和特征值/奇异值求解器(PRIMME),适用于处理大规模数据集。详细信息可以在Wu等人的论文中找到:“使用随机分箱特征的可伸缩光谱聚类”(KDD'18)以及IBM Research AI Blog中获取。为了运行此代码,用户需要安装RB、PRIMME和LibSVM工具包,并编译相应的MEX文件以适配Mac、Linux或Windows操作系统。此外,还需下载符合libsvm格式的数据集
Matlab
11
2024-09-14