机器学习方法
当前话题为您枚举了最新的 机器学习方法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
统计分析与机器学习方法详解模型算法与编程示例
详细介绍了统计分析与机器学习领域中关键的方法与算法,包括回归分析、主成分分析、聚类算法(如层次聚类和K-means聚类)以及多元时间序列关联分析。这些技术在社会科学、经济学、生物医学和工程学等多个领域有着广泛应用。回归分析通过建立数学模型预测自变量对因变量的影响,包括线性、多元和非线性回归。主成分分析(PCA)利用数据变异性最大的方向进行降维,保留数据主要信息。聚类分析无监督地将相似对象分组,层次聚类和K-means聚类是其典型方法。多元时间序列关联分析揭示时间序列数据中变量之间的相互作用。文章提供了讲义文档和编程示例,帮助读者理解和应用这些算法。
算法与数据结构
9
2024-09-01
R语言信用卡违约率建模九种机器学习方法实现
信用卡违约率的建模其实挺有意思的,用 R 来搞机器学习也比你想象的要顺手多了。文档里用到了九种算法,像KNN、逻辑回归、随机森林、神经网络这些常见方法都一网打尽。数据集是比较经典的defaultofcreditcardclientsDataSet,3 万条记录,24 个特征变量,像信用额度、婚姻状况、过去六个月的还款记录都有,挺适合练手的。而且每种方法都配了 R 的实现代码,思路也清晰,像逻辑回归用glm(),决策树用rpart,你基本照着写就能跑。响应变量是个二分类,起来不复杂。有意思的是还讲了一下怎么调参,比如用AUC、F1 分数这些指标来评估模型表现,调起来更有方向。不仅代码写得规范,也
算法与数据结构
0
2025-06-15
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
17
2024-05-01
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
数据挖掘
18
2024-05-25
利用欧拉公式在Matlab中计算圆周率的机器学习方法
使用欧拉公式结合Matlab实现圆周率的计算方法,这是一个涉及机器学习的实际案例。课程涵盖了吴恩达和林轩田的教学内容,包括Octave和Python3的编程示例,以及Tensorflow和其他库的使用。项目还包括数据处理和爬虫系统的初步实现。
Matlab
7
2024-09-13
矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
算法与数据结构
12
2024-05-01
机器学习入门介绍
机器学习的资源我也翻过不少,最近发现一篇内容挺扎实的入门资料,适合你这种想系统梳理一下基础概念的人。讲得比较细,从什么是训练集、验证集、模型这些基本术语,到监督学习、无监督学习、强化学习这几类常见类型,再到实际用的算法,像是 SVM、KNN、PCA 全都有。数据怎么准备、模型怎么选、怎么训练、怎么评估……整个流程讲得还蛮清楚的,没那么学术腔,比较接地气。如果你是前端但对 AI 方向感兴趣,这篇文章算是个不错的起点。另外它还贴心地列出了一些框架工具,像 Scikit-Learn、TensorFlow、PyTorch 都有,适合初学者入门的时候做个对比参考。如果你手上项目有需要做简单分类或数据预测
统计分析
0
2025-06-25
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
18
2024-07-23
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
18
2024-05-25
统计学习方法全面系统的监督学习方法介绍
统计学习是计算机及其应用领域的一门重要学科,本书详尽地介绍了监督学习的各种方法,涵盖了感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。每章以具体问题或实例为切入点,由浅入深地阐述思路,并提供必要的数学推导,帮助读者掌握统计学习方法的核心,从而掌握其应用。此外,书中还包括相关研究概述和少量习题,列出了主要参考文献,以满足读者进一步学习的需求。
算法与数据结构
19
2024-07-18