关联挖掘
当前话题为您枚举了最新的 关联挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
多层关联冗余过滤关联规则挖掘
多层关联规则里的冗余问题,挺让人头疼的,尤其是在数据量大的时候。冗余过滤就是个不错的工具,能帮你把“祖先关系”导致的重复规则过滤掉,逻辑清爽不少。用在那种需要分层挖掘的场景,比如商品分类、用户行为,效果还蛮的。
多层结构的数据,比如商品分“食品-零食-饼干”这几级,多时候你会挖出一堆类似的规则。其实上层已经有了,下层再出来一条,就是冗余。靠人工一个个过?太费劲。用这个过滤方案,效率高不少。
Apriori这种算法你肯定用过吧?配合这类过滤机制一起用,能大大提升输出规则的质量。不只是多,更重要的是准。有些规则看着热闹,其实一点价值都没有,这一步能帮你把水分滤掉。
顺带一提,想深入挖的话,可以看看
数据挖掘
0
2025-06-18
关联规则挖掘数据挖掘中的关联规则分析
关联规则挖掘在数据挖掘中有着广泛的应用,最典型的例子就是购物篮。比如,你想知道顾客常常购买哪些商品组合?通过关联规则挖掘,你能出哪些商品常常一起被买,哪些商品的购买时间序列比较稳定。像超市货架设计、库存管理等,都能从这些中受益。通过这些技术,你可以更好地满足顾客需求,提高销售效率。如果你刚开始接触数据挖掘,学习购物篮问题是一个不错的起点。这里有些链接可以进一步你了解相关的技术和案例哦。
数据挖掘
0
2025-06-24
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
24
2024-05-25
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
16
2024-05-19
关联规则挖掘路线图-数据挖掘概念、技术--关联1
关联规则挖掘包括布尔与定量关联(基于数据类型处理)。例如:buys(x, “SQLServer”) ^ buys(x, “DMBook”) -> buys(x, “DBMiner”) [0.2%, 60%]。此外,还有单维与多维关联,单层与多层分析。例如:age(x, “30..39”) ^ income(x, “42..48K”) -> buys(x, “PC”) [1%, 75%]。进一步的扩展涉及相关性和因果分析。需要注意的是,关联并不一定意味着因果关系。还有最大模式和闭合相集的概念,以及如“小东西”销售促发“大家伙”买卖的添加约束。
算法与数据结构
16
2024-07-12
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
DB2
11
2024-04-30
Apriori关联规则挖掘算法
数据挖掘里的关联,Apriori 算法算是个“老朋友”了。它用得还挺广,尤其是做零售、电商相关的频繁项集挖掘,比如顾客买了 A 还会不会买 B。Apriori.cpp和MyApriori.cpp这俩文件里头实现了标准和改进版的算法逻辑。要直接跑程序也可以,压缩包里有Apriori.exe和MyApriori.exe,点一下就能试,省了编译的事儿。
数据挖掘
0
2025-06-24
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
21
2024-04-30
多层关联冗余过滤数据挖掘关联规则
多层关联规则里的冗余过滤,挺适合想深入数据挖掘的你。规则太多看得眼花?其实多是祖孙关系里来的重复项,过滤下更干净明了。用Apriori算法来挖掘这些关联规则,挺常见的。不过一不小心就挖出一堆重复信息。比如你有“买了牛奶就买面包”,那“买了牛奶也买了全麦面包”也会被算进来,但其实意思差不多。嗯,过滤掉祖先那种重复规则,看起来会清爽多。再加个WEKA工具,界面友好,操作也简单。不管你是用户购物行为,还是想做推荐系统,套上这套逻辑准没错。像是用min_confidence来限制规则,或是设置层级结构分类,效果都蛮直观。如果你还不太熟,可以先看看这些资料:挖掘多层关联规则,或者去翻翻WEKA 关联规则
数据挖掘
0
2025-06-13