多时间尺度

当前话题为您枚举了最新的 多时间尺度。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

源荷两侧低碳优化调度研究基于风电与碳捕集特性的多时间尺度协调方法
风电的建模、电厂的碳捕集特性、需求响应的配合……这些内容都讲得挺系统,最妙的是,作者直接把代码放出来了,拿来即用,适合你拿去快速上手。多时间尺度的调度问题本来就挺麻烦,这篇文章用**MATLAB**加**CPLEX**模拟搞了一个源荷两侧优化方法,风电+响应配合调度,低碳目标也不落下。对搞电力系统的你来说,这个方案还蛮值得研究的。 多时间尺度下的调度确实有点绕,一边是风电不稳,一边是需求响应要协调,调度一乱,全系统效率就打折。这篇文章蛮聪明的地方在于,它让**源侧风电建模**和**荷侧需求响应模型**都上线了,模型跑起来比较顺,而且代码细节做得还不错。 比如你想模拟一下**碳捕集电厂**在不同
Matlab实现单尺度和多尺度Retinex算法程序
这份程序主要涵盖了Matlab中单尺度和多尺度Retinex算法的实现,所有代码均配有详细注释。
多时相图像的变化检测方法探讨
在Matlab环境中,探讨了多时相图像变化检测的几种方法:基于边缘检测、相似度度量及高斯模型。同时提供了相应的实现代码。
多尺度关联规则挖掘的尺度上推算法研究论文
多尺度理论已应用于数据挖掘领域,但多尺度数据挖掘研究尚不充分,缺乏普适性理论与方法。针对这一问题,研究了普适的多尺度数据挖掘理论,并提出了尺度上推关联规则挖掘算法SU-ARMA。首先基于概念分层理论划分数据尺度,定义数据尺度;接着阐明了多尺度数据挖掘的实质和研究核心;最后在多尺度数据理论基础上,利用采样理论和Jaccard相似性系数对频繁项集进行处理,实现了多尺度数据间知识的向上推导。实验结果显示,该算法在人造数据集和H省全员人口真实数据集上具有高覆盖率和精确度,支持度估计误差较低。
MATLAB数据处理模型代码优化多尺度小波分解发现时间序列中异常点位置
随着技术的不断进步,MATLAB数据处理模型代码正在优化,以利用多尺度小波分解技术更精准地侦测时间序列中的异常点位置。
MATLAB数据处理模型代码应用多尺度小波分析探测时间序列中异常点的定位.zip
MATLAB数据处理模型代码利用多尺度小波分解来检测时间序列中的异常点位置。随着数据处理技术的进步,这种方法在时间序列分析中显示出了显著的应用潜力。
多尺度一维分解-小波变换Matlab实现
多尺度一维分解命令:wavedec格式:[C, L]=wavedec(X,N,’wname’)[C, L]=wavedec(X,N,Lo_D,Hi_D)
优化fminsearch函数以解决高尺度平滑问题
这种fminsearch函数的优化针对了单纯形方法在处理高尺度平滑问题时的限制。当函数在较大尺度下平滑而在小尺度下粗糙时(例如,当参数范围为(-10, 10)时存在清晰的全局极值,但在(-0.1, 0.1)放大时存在多个局部极值),传统的fminsearch初始试验可能过于接近,不适合所有情况。优化包括引入DiffMinChange选项以限制收缩,添加两个新的初始化选项(usual_delta和zero_term_delta),以及针对带有两个参数情况的补丁(可能适用于三个参数)。调用示例:options = optimset('Display','iter', '诊断','开', 'TolF
Matlab实现多尺度二维小波变换
wavedec2 函数 可用于执行多尺度二维小波变换。 语法: [C, S] = wavedec2(X, N, 'wname') [C, S] = wavedec2(X, N, Lo_D, Hi_D) 参数: X:输入图像 N:分解层数 'wname':小波名称 Lo_D:低通分解滤波器 Hi_D:高通分解滤波器 返回值: C:小波系数矩阵 S:簿记矩阵,包含分解过程的信息
多尺度图像边缘检测的小波变换优化
利用Matlab源代码实现基于小波变换的多尺度图像边缘检测,通过优化算法提升检测精度。