最小支持度
当前话题为您枚举了最新的 最小支持度。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
设置最小支持度阈值数据挖掘应用流程解析
设定最小支持度阈值为2。以下为各交易号及其项集合:
T100: I1, I2, I5
T200: I2, I4
T300: I2, I3
T400: I1, I2, I4
T500: I1, I3
T600: I2, I3
T700: I1, I3
T800: I1, I2, I3, I5
T900: I1, I2, I3
通过这些数据,可以在挖掘分析中找出频繁项集并计算各项集的支持度,进而有效支持关联规则生成。
算法与数据结构
9
2024-10-25
最小支持度阈值设定数据挖掘技术及应用
设定最小支持度阈值,简单来说就是设置一个频繁项集出现的最小次数,只有达到这个阈值的项集才能参与到后续的中。这对提升挖掘效率有挺大。比如你可以设定一个支持度阈值,像例子里的 2,只保留出现 2 次以上的项集合,其他的就自动被过滤掉了。
数据挖掘中的支持度计算也挺,你可以通过设置一个较低的阈值来避免漏掉潜在的重要数据,同时又能确保计算的高效性。像在超大数据时,这种设定有用,你集中真正重要的信息。
关联规则挖掘中的最小支持度阈值是个核心概念,如果你设置得当,它能你精准地抓住频繁项集,进而发现那些有用的规则。就比如挖掘Apriori算法时,合理设置这个阈值,会大大减少不必要的计算。
如果你还没试过,建
Hadoop
0
2025-06-17
MATLAB实现最小二乘支持向量机仿真教程
这是一篇讲解MATLAB在最小二乘支持向量机(LS-SVM)上的应用的文章,对于计算机仿真领域非常有帮助!通过,读者可以学习如何在MATLAB环境下实现最小二乘支持向量机模型,并应用于数据分类和回归问题,深入理解其基本原理和实现过程。
Matlab
8
2024-11-06
关联规则度量:支持度和可信度
规则度量支持度和可信度可用于找出符合最小支持度和可信度条件的规则。
支持度衡量一次交易中同时包含规则中所有项的可能性。
可信度衡量在包含规则中前提项的交易中,结论项出现的条件概率。
例如,若最小支持度为 50%,最小可信度为 50%,则可能获得以下规则:
A → C (支持度:50%,可信度:66.6%)
C → A (支持度:50%,可信度:100%)
这意味着:
购买尿布的客户中有 50% 同时购买了啤酒。
购买尿布和啤酒的客户中有 66.6% 同时购买了啤酒。
购买啤酒的客户中有 50% 同时购买了尿布。
购买尿布和啤酒的客户中有 100% 同时购买了尿布。
算法与数据结构
10
2024-04-30
关联规则支持度计算与Hash Tree优化
候选集的支持度计算,其实挺讲技巧的。候选集数量多到吓人,一笔交易能匹配好几个,这时候硬算不现实。用Hash Tree去组织这些候选集就方便多了——内部节点是哈希表,叶子节点挂着项集和支持度。查询的时候靠一个Subset函数,能一下找出交易中包含的所有候选集,效率还不错。适合大批量数据,逻辑也挺清晰。
算法与数据结构
0
2025-06-17
从数据库D生成项集支持度计数
通过扫描数据库D,统计每个候选项出现的次数,得到项集支持度计数C1如下:
| 项集 | 支持度 ||---|---|| {I1} | 6 || {I2} | 7 || {I3} | 6 || {I4} | 2 || {I5} | 2 |
数据挖掘
12
2024-05-12
数据挖掘中支持度递减的关联规则探索
在数据挖掘领域,支持度递减是一个重要的概念。它指的是随着数据集中项目集的大小增加,支持度递减的规则开始显现。这一现象揭示了在大数据背景下关联规则的变化模式。
数据挖掘
13
2024-07-25
GWO-LSSVM灰狼优化最小二乘支持向量机预测模型
本程序使用灰狼算法优化最小二乘支持向量机(GWO-LSSVM),能够进行高效的数据预测。如果不希望修改代码,输入的数据需按示范数据(data)排列方式进行排列。行为指标集包括u11到u53,列为数据集。此代码适用于股价预测、电力预测、交通流量预测、风险预测、价格预测等应用场景。请注意,代码可能存在不完善之处,您可以根据需求进行修改。
Matlab
14
2024-11-06
【支持向量机分类】基于花粉传播算法优化的最小二乘支持向量机实现数据分类Matlab代码.zip
涵盖智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划及无人机等多个Matlab仿真领域。
Matlab
6
2024-09-22
基于部分支持度树的关联规则增量更新新算法(2011年)
关联规则挖掘是数据挖掘技术的一种简便实用方法,广泛应用于各个领域。提出了一种基于部分支持度树的关联规则增量更新算法,专为数据库新增数据时最小支持度不变的情况设计。该算法充分利用已挖掘的关联规则和保留的部分支持度树,显著提升了性能。新算法仅需一次数据库部分扫描即可完成更新,进一步提高了效率。实验结果验证了该算法在关联规则更新问题上的有效性和挖掘效率的提升。
数据挖掘
8
2024-07-23