科学决策
当前话题为您枚举了最新的 科学决策。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
数据科学驱动商业决策
近年来,数据科学在计算机领域扮演着越来越重要的角色。大数据、数据挖掘、机器学习、数据可视化等技术的发展,为企业带来了前所未有的机遇。企业积极引进数据人才,借助数据分析摆脱经验主义的束缚,进行精准预测,以期获得更高的商业回报。
数据挖掘
20
2024-06-30
数据科学的真正工作:将数据转化为信息,做出更优决策
《经济学人》杂志大胆宣称,数据现在是“世界上最有价值的资源”。但是,正如 Kenett 和 Redman 细致描述的那样,释放数据的价值需要的不仅仅是技术上的卓越。
《数据科学的真正工作》这本书探讨了理解问题、处理质量问题、与决策者建立信任、将数据科学团队置于正确的组织位置以及帮助公司成为数据驱动型企业。
这些工作区分了优秀的数据科学家和伟大的数据科学家,区分了做出边际贡献的团队和推动业务发展的团队,区分了从数据中获取一些价值的公司和数据真正成为“最有价值的资源”的公司。
这两位作者是分析、数据管理和数据质量方面的世界级专家;他们对这些主题的了解比我们大多数人所知的还要多。他们的著作...
算法与数据结构
14
2024-05-21
数据科学免费自学数据科学的路径与资源推荐
想自学数据科学,但不想花一大笔钱?这个免费的开源课程推荐路径可以帮你走上正轨!通过 MOOC(大规模开放在线课程),你可以随时随地接触到世界顶级大学的课程。推荐的课程涵盖从数据科学基础到机器学习的各个方面。课程安排也灵活,你可以根据自己的进度来调整。最棒的是,只要你能每周投入 20 个小时,大约两年内就能完成所有学习内容!
其中,包括了计算机科学、数据结构与算法、微积分等课程。每个模块都被精心设计,适合任何想深入理解数据科学的朋友。你还可以根据个人情况调整学习进度,看看自己预计何时能完成。嗯,,如果你有足够的热情,走这条路不难!
顺便提一下,课程内还附带了一些实用的资源链接,像 MIT 的线性
数据挖掘
0
2025-07-02
决策树:构建决策模型的利器
决策树,一种强大的机器学习算法,通过树形结构模拟决策过程。每个节点代表一个属性测试,分支对应测试结果,最终的叶节点则给出预测类别或输出值。
决策树的核心在于通过对输入数据进行分层分割,构建精准的预测模型。这一过程如同绘制一张路线图,引导我们根据数据的特征做出最佳决策。
算法与数据结构
22
2024-05-14
打垒球的决策表分析-决策树算法
决策表中包含天气、温度、湿度、风速等多个因素,用于判断是否适合进行打垒球活动。例如,当天气为晴、温度炎热、风速弱时,取消活动;而在阴天、温度寒冷、风速正常时,可以进行打垒球。
算法与数据结构
13
2024-09-14
Spark助力数据科学
Spark:数据科学的强大引擎
Spark 凭借其分布式计算能力和丰富的工具生态,已成为数据科学领域不可或缺的利器。它能够高效处理海量数据,并支持多种数据科学任务,例如:
数据预处理: 使用 Spark 清洗、转换和准备数据,为后续分析打下坚实基础。
机器学习: Spark MLlib 库提供多种机器学习算法,涵盖分类、回归、聚类等领域,帮助您构建预测模型。
数据可视化: 结合其他可视化工具,将 Spark 分析结果转化为直观的图表和图形,洞察数据背后的规律。
Spark 的优势:
速度快: 基于内存计算,比传统 MapReduce 框架快数倍甚至数十倍。
易于使用: 提供 Py
spark
11
2024-04-30
Spark数据科学指南
Spark 是大数据领域的明星,性能和灵活性让它受到了广泛欢迎。如果你是数据科学家或开发者,Spark 几乎是你不可错过的工具。Spark for Data Science这本书就深入了如何用 Spark 2.0 进行数据,是在机器学习的应用上。书里不仅仅讲 Spark 的基本框架,还了 Spark SQL、MLlib 等常用组件,你掌握最新的技术和应用。无论是流、图形计算还是大规模数据,Spark 都能轻松搞定。而且,Spark 的弹性分布式数据集(RDD)设计也让大数据变得更加高效。书中的内容深度适中,适合想要入门或进阶的开发者。推荐给那些对大数据和机器学习有兴趣的朋友们,能你更好地理解
spark
0
2025-06-15
数据科学入门书籍推荐
本书单为有志于从事数据科学的读者提供了全面指南,涵盖了从基础理论到实践应用的各个领域。
Hadoop
11
2024-05-20
决策分析方法:驾驭不确定性,优化决策
科学决策的基石是合理的决策分析方法。决策分析作为一种系统性的分析方法,专门用于研究不确定性问题。其核心目标是改进决策过程,从众多备选方案中筛选出最佳方案,以实现特定目标。
针对不同的决策情境,我们可以采用不同的决策分析方法:
确定性情形
不确定性情形
随机性情形
多目标情形
多人决策情形
数据挖掘
16
2024-05-15
行为科学统计基础
本书详细介绍了行为科学(特别是心理学)中使用的基础统计知识,包括描述统计、简单假设检验以及基本的多元统计方法。对于希望进行数据分析的学生来说,这是一本不可多得的参考书。
算法与数据结构
11
2024-08-17