核密度法
当前话题为您枚举了最新的核密度法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
使用核密度估计绘制散点图
这个功能利用核平滑函数计算每个点的概率密度估计(PDE),并且用颜色表示每个点。输入x表示X轴上的位置,y表示Y轴上的位置。varargin可用于向scatter函数发送一组指令,支持MarkerSize参数,不支持MarkerColor参数。输出h返回创建的散点对象的句柄。例如,生成数据x = normrnd(10, 1, 1000, 1); y = x * 3 + normrnd(10, 1, 1000, 1); 使用scatter_kde(x, y, '填充', 'MarkerSize', 100); 添加颜色栏cb = colorbar(); cb.Label.String = '概率
Matlab
14
2024-08-13
多维数据判别分析非参核密度算法
针对传统判别算法对数据分布类型假定的局限,提出采用非参核密度算法建立多维数据的判别规则。该算法充分利用样本信息,显著提高判别精度,且不受分布假定的限制。
数据挖掘
11
2024-05-15
核密度法与地理学第一定律的软件架构设计模式
核密度法的确是一个挺有意思的空间工具,尤其是在城市规划和设施服务方面。它通过考察地理实体的空间分布来数据密度。相比样方密度法,它的平滑度更好,不会有极端值的干扰,比较适合做连续性的。不过,核密度法的计算比较复杂,尤其是在大数据量时,效率就会稍逊一筹。你如果需要提升效率,可以考虑一些几何算法的优化方法,像是分治法,来加速计算。不过在大部分普通应用场景下,核密度法还是蛮实用的,值得试试哦!
统计分析
0
2025-06-14
基于高斯核的距离和密度聚类算法GDD聚类-matlab开发
请引用:Emre Güngör,Ahmet Özmen,使用高斯核的基于距离和密度的聚类算法,发表于《Expert Systems with Applications》第69卷,2017年,第10-20页,ISSN 0957-4174。详细信息请参阅原始文章链接:https://doi.org/10.1016/j.eswa.2016.10.022 (http://www.sciencedirect.com/science/article/pii/S095741630553X)。对于聚类数据集和/或形状集,您可以查看:https://cs.joensuu.fi/sipu/datasets/
Matlab
13
2024-08-05
Python数据可视化信誉评级核密度曲线与直方图分析
这段代码利用Python的pandas和matplotlib库对Excel中的信誉评级数据进行可视化处理。首先,它从Excel文件中读取数据并进行清洗,然后绘制核密度曲线和直方图,展示了信誉评级的分布情况。适用于具备Python编程基础和数据分析需求的人群,尤其是对信誉评级数据分布感兴趣的用户。通过分析核密度曲线和直方图,可以直观地了解数据的集中程度、偏态以及可能的异常值,为后续数据分析和决策提供重要参考。
统计分析
7
2024-07-16
一维数据的高效核密度估计器Kernel Density Estimator MATLAB开发
这个实现是一个可靠且极快的一维数据核密度估计器,假设采用高斯核并自动选择带宽。与其他许多实现不同,它不受多模态密度的影响,这种估计不会因数据中存在广泛分离模式而恶化。输入数据为构建密度估计的数据向量,网格点数间隔为2的幂,如果不是2的幂则向上取整为2的下一个幂。默认网格点数为2^12。区间[MIN, MAX]由数据的最小值和最大值确定。输出为自动选择的带宽。
Matlab
9
2024-07-22
基于密度自适应核的人员重新识别排行MATLAB代码影响分析
MATLAB代码影响分析显示,使用基于密度自适应核的方法对人员重新识别有显著效果。
Matlab
9
2024-09-26
模糊核聚类算法实现
我创建了一个函数来实现模糊核聚类算法,用于多模型控制建模。尽管建模没有成功,但该聚类算法运行良好。
Matlab
10
2024-05-13
密度峰值聚类 MATLAB 实现
提供一种基于密度峰值快速搜索,用于发现聚类中心的聚类算法 MATLAB 源代码。
算法与数据结构
16
2024-05-12
密度峰值聚类算法源码
该代码是基于 Rodriguez A, Laio A 发表在 Science 上的论文中提出的密度聚类算法实现。
算法与数据结构
12
2024-05-25