我创建了一个函数来实现模糊核聚类算法,用于多模型控制建模。尽管建模没有成功,但该聚类算法运行良好。
模糊核聚类算法实现
相关推荐
基于高斯核的距离和密度聚类算法GDD聚类-matlab开发
请引用:Emre Güngör,Ahmet Özmen,使用高斯核的基于距离和密度的聚类算法,发表于《Expert Systems with Applications》第69卷,2017年,第10-20页,ISSN 0957-4174。详细信息请参阅原始文章链接:https://doi.org/10.1016/j.eswa.2016.10.022 (http://www.sciencedirect.com/science/article/pii/S095741630553X)。对于聚类数据集和/或形状集,您可以查看:https://cs.joensuu.fi/sipu/datasets/
Matlab
13
2024-08-05
FCM模糊C均值聚类MATLAB实现
模糊 C 均值聚类的 MATLAB 实现还挺适合入门和进阶的你玩一玩。核心是 FCM 这个老牌算法,多说话人识别那种边界模糊的数据还挺拿手。代码结构清晰,逻辑不绕,直接跑一遍你就能明白个七七八八。
FCM 的核心思想其实就是让一个样本不只属于某一类,而是多个类都有点关系——嗯,挺人性化的,现实哪有那么清清楚楚的分类嘛。
MATLAB 在搞数值计算这块儿还蛮强,FCM 这种数学味儿重的算法放进去刚刚好。代码里U矩阵和mu中心的更新逻辑,推荐你重点看看。模糊指数m和聚类数c选得好,聚得又快又稳。
举个应用例子,如果你在做语音识别、说话人聚类那类项目,丢几个MFCC进去跑跑,就能把说话人的风格特征挖
Matlab
0
2025-06-16
CURE聚类算法实现
数据挖掘里的聚类算法不少,CURE 算法算是比较的那一类,抗噪能力强,聚类形状也不挑。推荐你看看这份 PPT,讲得挺详细,图示也清楚,思路梳理得比较顺。多个代表点+缩放策略的思路,在那种不规则分布、带噪声的数据时,表现还蛮稳定。你要是之前用惯了 K-means,第一次接触 CURE 会觉得思路不太一样,但看完这个文档应该就清楚多了。实现上也不算复杂,就是聚类前加了点小操作,比如先随机采样、再做层次聚类、挑点代表点压缩一下。Python写起来也蛮顺,推荐搭配下scikit-learn或NumPy练练手,效果直观。嗯,顺带一提,除了 CURE 之外,LSNCCP 算法也值得看看,聚类思路也挺有意思
数据挖掘
0
2025-06-16
基于模糊C均值算法的数据聚类分析及Matlab实现
详细阐述了模糊C均值(FCM)聚类算法的理论和实施步骤,并使用Matlab演示了FCM在数据挖掘中的应用。
数据挖掘
15
2024-07-17
模糊聚类算法MATLAB代码优化与应用
优化与应用模糊聚类算法MATLAB代码,包括模糊c均值聚类、模糊子空间聚类和最大熵聚类。示例使用虹膜数据集进行演示,详细展示每种算法的运行和聚类结果。选择超参数“choose_algorithm=1”运行demo_fuzzy.m,每次迭代均准确率为0.89333。
Matlab
16
2024-07-28
DBSCAN算法Matlab实现聚类算法
DBSCAN 算法是一种基于密度的聚类算法,挺适合那些形状不规则的数据。在 Matlab 里实现 DBSCAN,可以帮你更轻松地发现不同形态的聚类,尤其在噪声数据时有用。核心思路是通过两个参数:ε(邻域半径)和minPts(最小邻居数)来定义一个点的密度。简单来说,如果一个点的邻域内有足够的点,那它就是核心点,核心点周围的点就会被聚在一起,形成一个聚类。实现这个算法的时候,你得数据,比如从 txt 文件读入数据,设置好ε和minPts这两个参数,选择合适的值才能得到靠谱的聚类效果。之后就是进行邻域搜索了,这一步比较重要,要用到 K-d 树之类的数据结构来加速查找。就是把聚类结果用不同颜色显示出
算法与数据结构
0
2025-06-11
图像模糊聚类分析的应用及实现
在图像处理和数据分析领域,模糊聚类分析是一种重要的方法,允许对象在类别之间具有一定的模糊性,即一个样本可以部分地属于多个类别。深入探讨了模糊聚类分析的概念、应用以及实现过程。与传统聚类算法不同,模糊聚类考虑了不确定性,允许样本以不同程度归属于不同类别,适用于处理边界不清晰或数据分布复杂的图像分析问题。文章介绍了Fuzzy C-Means (FCM)算法作为最常用的实现之一,通过最小化模糊分区不纯度准则来更新每个样本对类别的隶属度,并根据预设条件或最大迭代次数确定算法结束。实际应用中,模糊聚类广泛用于图像分割、特征提取和图像分类等领域,提高了类别识别的鲁棒性。
数据挖掘
14
2024-10-12
OPTICS聚类算法MATLAB实现
这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
数据挖掘
17
2024-05-21
Python实现DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法,能够发现任意形状的聚类,并且对噪声不敏感。在Python中,可以利用Scikit-Learn库实现DBSCAN算法,该库提供了丰富的机器学习算法和数据预处理工具。DBSCAN算法的核心思想是通过定义“核心对象”来识别高密度区域,并将这些区域连接起来形成聚类。它不需要预先设定聚类的数量,而是根据数据分布自适应确定。具体步骤包括:选择未访问的对象、计算ε邻域、判断核心对象、扩展聚类以及处理边界对象和噪声。以下是Python实现DBSCA
算法与数据结构
13
2024-08-03