优化与应用模糊聚类算法MATLAB代码,包括模糊c均值聚类、模糊子空间聚类和最大熵聚类。示例使用虹膜数据集进行演示,详细展示每种算法的运行和聚类结果。选择超参数“choose_algorithm=1”运行demo_fuzzy.m,每次迭代均准确率为0.89333。
模糊聚类算法MATLAB代码优化与应用
相关推荐
使用Matlab代码优化K均值聚类算法
output.csv文件包含了586个模型的弹簧刚度数据。通过Matlab中的K均值聚类方法,可以从这些模型中提取出50个代表性的弹簧刚度。README.md文件中提供了如何调整算法以及三种不同的初始聚类质心选择方法的比较结果,分别为k-means++、样本随机选择和均匀随机选择。这些方法对于最终聚类结果的影响显著,但具体的性能差异尚不明确。
Matlab
19
2024-08-05
自适应模糊阈值法MATLAB代码优化指南
档帮助您优化自适应模糊阈值法MATLAB代码,以提高其性能和可读性。在Fedora 31上配置emacs是我现在的工作环境。当前我使用的是Emacs 28.0.50版本,试图解决最新版本可用的问题。从init.el文件中,您可以导出配置脚本,用于Emacs的执行。该文件位于存储库中,包含系统基本配置,如环境变量和软件包加载。对于代理连接的测试,我们将检查是否存在配置文件。
Matlab
18
2024-07-31
社交拟态优化算法(SMO)的MATLAB代码优化及工程应用
社交拟态优化算法(SMO)是一种新型优化方法,特别适用于工程应用。提供了MATLAB代码示例(版本0.1),通过Costfunc.m文件来最小化目标函数。用户只需输入适当的SMO参数和问题参数即可进行优化。研究者可参考以下期刊文章:Saeed Balochian、Hossein Baloochian在《Expert Systems with Applications》2019年的研究成果。
Matlab
12
2024-09-29
快速K-均值聚类图像分割算法源代码优化
快速K-均值(k-means)聚类算法是一种常用的数据挖掘技术,广泛应用于图像分割。该算法基于中心点的迭代更新,将数据点分配到最近的聚类中心,以此来对图像进行分类。在图像处理中,每个像素视为一个数据点,通过k-means算法可以有效地将图像分割成多个具有相似颜色或特征的区域。在描述的\"快速K-均值聚类图像分割算法源代码优化\"中,我们推测这是一种图像分割实现方式。通常,k-means算法包括以下几个步骤:1.初始化:选择k个初始质心(cluster centers),可以随机选取或根据先验知识设定。2.分配数据点:计算每个像素点到所有质心的距离,并将像素点分配给最近的质心所在的簇。3.更新质
数据挖掘
16
2024-09-14
多智能体仿真matlab代码优化与应用
网络中具有切换拓扑和时滞的多智能体的共识问题是一个重要研究领域。
Matlab
11
2024-08-04
模糊核聚类算法实现
我创建了一个函数来实现模糊核聚类算法,用于多模型控制建模。尽管建模没有成功,但该聚类算法运行良好。
Matlab
10
2024-05-13
Matlab数值计算及其应用(代码优化)
介绍了Matlab程序代码,重点讨论了数值计算的多种方法和应用场景。
Matlab
13
2024-08-25
Matlab代码优化图像矩阵FSVM算法实现
提供了图像矩阵FSVM算法的Matlab实现,涵盖了FSVM线性和内核算法的具体应用。代码适用于多种数据集,例如“乳房癌”数据集。通过修改代码中的setname变量,可以轻松评估其他数据集。文章强调了数据预处理的重要性,特别是对于未经预处理的原始数据。此外,提供了不同变体的算法以优化总散点矩阵和类内散点矩阵的计算效率。
Matlab
13
2024-07-27
Matlab人脸识别代码优化
使用Matlab编写的人脸识别代码,主要基于主成分分析(PCA)算法。
Matlab
9
2024-10-01