这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
OPTICS聚类算法MATLAB实现
相关推荐
OPTICS聚类算法Python实现
资源包含OPTICS聚类算法的Python实现代码,此算法是对DBSCAN算法的优化改进。
算法与数据结构
12
2024-05-21
DBSCAN算法Matlab实现聚类算法
DBSCAN 算法是一种基于密度的聚类算法,挺适合那些形状不规则的数据。在 Matlab 里实现 DBSCAN,可以帮你更轻松地发现不同形态的聚类,尤其在噪声数据时有用。核心思路是通过两个参数:ε(邻域半径)和minPts(最小邻居数)来定义一个点的密度。简单来说,如果一个点的邻域内有足够的点,那它就是核心点,核心点周围的点就会被聚在一起,形成一个聚类。实现这个算法的时候,你得数据,比如从 txt 文件读入数据,设置好ε和minPts这两个参数,选择合适的值才能得到靠谱的聚类效果。之后就是进行邻域搜索了,这一步比较重要,要用到 K-d 树之类的数据结构来加速查找。就是把聚类结果用不同颜色显示出
算法与数据结构
0
2025-06-11
CURE聚类算法实现
数据挖掘里的聚类算法不少,CURE 算法算是比较的那一类,抗噪能力强,聚类形状也不挑。推荐你看看这份 PPT,讲得挺详细,图示也清楚,思路梳理得比较顺。多个代表点+缩放策略的思路,在那种不规则分布、带噪声的数据时,表现还蛮稳定。你要是之前用惯了 K-means,第一次接触 CURE 会觉得思路不太一样,但看完这个文档应该就清楚多了。实现上也不算复杂,就是聚类前加了点小操作,比如先随机采样、再做层次聚类、挑点代表点压缩一下。Python写起来也蛮顺,推荐搭配下scikit-learn或NumPy练练手,效果直观。嗯,顺带一提,除了 CURE 之外,LSNCCP 算法也值得看看,聚类思路也挺有意思
数据挖掘
0
2025-06-16
MATLAB开发高效KMeans聚类算法实现
MATLAB开发:高效KMeans聚类算法实现。这种实现提供了一种快速而有效的图像或阵列的KMeans聚类方法。
Matlab
15
2024-07-13
用Matlab实现的量子聚类算法
量子聚类算法是一种利用Matlab实现的先进数据分析工具,通过调整函数即可满足个性化需求。
Matlab
14
2024-08-10
Matlab实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习方法,适用于数据分群和模式识别。在Matlab中实现K-means算法能够有效处理数据集,并生成聚类中心。通过迭代更新聚类中心和重新分配数据点,算法能够优化聚类结果。
Matlab
12
2024-08-22
Mean Shift图像聚类算法MATLAB实现
Mean Shift 的图像聚类效果真挺不错,尤其在不想预设类别数量的时候,用起来省心多了。这套 MATLAB 源码就把算法从头到尾都跑了一遍,还带了演示图,直观又清楚,挺适合想搞清楚算法细节的你。
Mean Shift 算法是种非参数聚类方法,简单说,就是不需要提前告诉它要分几类,它自己能在数据里找“人多的地方”,把那块儿认作一类。适合图像分割这种“你也说不好到底几类”的场景。
代码里用 MATLAB 实现了整个流程,从图像预开始,到密度估计、迭代移动,再到找出聚类中心。写得挺清楚的,而且结构也比较清爽,适合你拿来改。
比如你想试着做个颜色分割,可以把图像转成HSV空间,跑这段 Mean S
Matlab
0
2025-06-16
Python实现DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法,能够发现任意形状的聚类,并且对噪声不敏感。在Python中,可以利用Scikit-Learn库实现DBSCAN算法,该库提供了丰富的机器学习算法和数据预处理工具。DBSCAN算法的核心思想是通过定义“核心对象”来识别高密度区域,并将这些区域连接起来形成聚类。它不需要预先设定聚类的数量,而是根据数据分布自适应确定。具体步骤包括:选择未访问的对象、计算ε邻域、判断核心对象、扩展聚类以及处理边界对象和噪声。以下是Python实现DBSCA
算法与数据结构
13
2024-08-03
蚁群聚类算法的Matlab实现指南
详细介绍了蚁群聚类算法在Matlab中的实现方法,并包含详尽的说明和报告。技术实践中,该算法被广泛应用于解决复杂问题。
Matlab
9
2024-07-30