量子聚类算法是一种利用Matlab实现的先进数据分析工具,通过调整函数即可满足个性化需求。
用Matlab实现的量子聚类算法
相关推荐
MATLAB实现的量子遗传算法源码
该文详细介绍了利用MATLAB编写的量子遗传算法,包括常见的突变操作、初始个体数据生成器、适应度函数的计算以及新种群的生成过程。
Matlab
7
2024-07-26
用Matlab实现A星算法
A星算法在Matlab中的具体实现,配有个性化界面,用户可直接运行使用。
Matlab
22
2024-09-29
DBSCAN算法Matlab实现聚类算法
DBSCAN 算法是一种基于密度的聚类算法,挺适合那些形状不规则的数据。在 Matlab 里实现 DBSCAN,可以帮你更轻松地发现不同形态的聚类,尤其在噪声数据时有用。核心思路是通过两个参数:ε(邻域半径)和minPts(最小邻居数)来定义一个点的密度。简单来说,如果一个点的邻域内有足够的点,那它就是核心点,核心点周围的点就会被聚在一起,形成一个聚类。实现这个算法的时候,你得数据,比如从 txt 文件读入数据,设置好ε和minPts这两个参数,选择合适的值才能得到靠谱的聚类效果。之后就是进行邻域搜索了,这一步比较重要,要用到 K-d 树之类的数据结构来加速查找。就是把聚类结果用不同颜色显示出
算法与数据结构
0
2025-06-11
OPTICS聚类算法MATLAB实现
这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
数据挖掘
17
2024-05-21
用Matlab实现Karlman算法背景提取
在视频图像处理领域,利用Matlab编写Karlman算法进行背景提取是一项重要的技术。该方法允许有效地分离动态物体和静态背景,为视觉分析和监控系统提供了可靠的基础。
Matlab
18
2024-09-22
蚁群聚类算法的Matlab实现指南
详细介绍了蚁群聚类算法在Matlab中的实现方法,并包含详尽的说明和报告。技术实践中,该算法被广泛应用于解决复杂问题。
Matlab
9
2024-07-30
K-means聚类算法的MATLAB实现
K-means是一种传统的计算K均值的聚类算法,因其计算复杂度低,而成为应用最为普遍的一种聚类方法。该算法通过将数据分为K个簇,使得每个簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。K-means算法的核心思想是迭代地调整每个簇的中心(即质心),直到聚类结果收敛。
Matlab
19
2024-11-05
CURE聚类算法实现
数据挖掘里的聚类算法不少,CURE 算法算是比较的那一类,抗噪能力强,聚类形状也不挑。推荐你看看这份 PPT,讲得挺详细,图示也清楚,思路梳理得比较顺。多个代表点+缩放策略的思路,在那种不规则分布、带噪声的数据时,表现还蛮稳定。你要是之前用惯了 K-means,第一次接触 CURE 会觉得思路不太一样,但看完这个文档应该就清楚多了。实现上也不算复杂,就是聚类前加了点小操作,比如先随机采样、再做层次聚类、挑点代表点压缩一下。Python写起来也蛮顺,推荐搭配下scikit-learn或NumPy练练手,效果直观。嗯,顺带一提,除了 CURE 之外,LSNCCP 算法也值得看看,聚类思路也挺有意思
数据挖掘
0
2025-06-16
JCuda实现的DBSCAN聚类算法
JCuda 写的 DBSCAN,真的是硬核中的硬核。完全用 GPU 跑聚类,速度相当给力,尤其数据量一大,优势就体现出来了。只要你机器上装了 NVIDIA 显卡,搞定 CUDA 环境,剩下的就按步骤来就行,没啥坑。
JCuda 的 DBSCAN 实现比较适合那种对性能要求高的场景,比如地理空间数据、海量图像特征提取啥的。核心代码是个.cu文件,直接用nvcc编译成.ptx,Java 调用它,顺滑。关键一步:记得把JCuda-All-0.8.0-bin-linux-x86_64.zip解压好,里面的.so和.jar都不能漏。
编译时用javac -Djava.ext.dirs=...这句,路径记
算法与数据结构
0
2025-06-15