资源包含OPTICS聚类算法的Python实现代码,此算法是对DBSCAN算法的优化改进。
OPTICS聚类算法Python实现
相关推荐
OPTICS聚类算法MATLAB实现
这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
数据挖掘
17
2024-05-21
OPTICS排序式聚类算法
密度聚类里的老大哥,OPTICS的排序式聚类方式挺,不直接告诉你分了几类,而是用一串“可视化”顺序,帮你自己发现聚类结构。挺适合那种你压根不知道要分几类的数据集。你要是用过DBSCAN,那上手它也不难,就是多个参数别调太死,灵活点更好玩。
数据挖掘
0
2025-07-02
Python实现DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法,能够发现任意形状的聚类,并且对噪声不敏感。在Python中,可以利用Scikit-Learn库实现DBSCAN算法,该库提供了丰富的机器学习算法和数据预处理工具。DBSCAN算法的核心思想是通过定义“核心对象”来识别高密度区域,并将这些区域连接起来形成聚类。它不需要预先设定聚类的数量,而是根据数据分布自适应确定。具体步骤包括:选择未访问的对象、计算ε邻域、判断核心对象、扩展聚类以及处理边界对象和噪声。以下是Python实现DBSCA
算法与数据结构
13
2024-08-03
Python DBSCAN聚类算法实现
Python 实现的 DBSCAN 聚类算法,用起来还挺顺手的。先是用 Python 随机生成了一些测试数据,借助sklearn跑了一下 DBSCAN,再用matplotlib把聚类效果一画出来,一目了然。整个流程还蛮清晰,适合你快速上手聚类。
用sklearn.cluster.DBSCAN来密度聚类,比自己写逻辑省事多了。调参数也比较灵活,像eps和min_samples这俩一调,效果立马不一样。你可以根据自己的数据多试几下,找出最合适的组合。
可视化部分用的是matplotlib.pyplot,标注不同的聚类结果挺直观的。颜色一对比,谁属于哪一类马上能看出来。你要是喜欢折腾可视化,顺手还能
算法与数据结构
0
2025-06-26
Python实现Kmeans聚类算法
Python 写的 Kmeans 聚类算法代码,思路清晰,结构也比较简单,蛮适合拿来当入门练手项目的。用的是经典的鸢尾花数据集,k=3,每个样本4 维特征,分类目标也比较明确,方便调试。课程作业改的版本,逻辑直接,适合你快速掌握 Kmeans 的基本流程。像是怎么初始化质心、如何计算样本间的欧式距离,还有怎么判断收敛,代码里都有体现。讲到相似度的衡量,这里用的是“距离越小越相似”的逻辑,挺直观的。就像现实中会根据说话口音聚类人群,这里的聚类也是类似的思想。有意思的是,还提到了大规模用户数据的应用场景,比如微博推荐。这种从小样本练到大数据的思路,挺实用的。如果你刚好在研究聚类,或者准备复习模式识
算法与数据结构
0
2025-06-30
使用Python实现Kmeans聚类算法
Kmeans算法是一种经典的无监督学习方法,用于数据聚类。其主要目标是将数据集分成预先指定数量的簇,使得每个簇内的数据点彼此相似,而不同簇之间的数据点差异较大。Python语言因其易读性和丰富的数据分析库,特别适合实现Kmeans算法。借助于scikit-learn库,我们可以方便地创建和应用Kmeans模型。在Python 3.5及以上版本中,可以使用sklearn.cluster.KMeans来实现。首先,导入必要的库:python from sklearn.cluster import KMeans import numpy as np import pandas as pd然后,准备数
算法与数据结构
17
2024-07-18
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
K-means算法实现Python 3聚类算法
k-means 算法的实现源代码挺,适合想入门机器学习或者数据的小伙伴。它的核心思想就是通过聚类把数据分组,算法会尽量确保每个组里的数据尽相似,不同组的数据差异大。你可以用 Python3 实现,像 NumPy 和 Pandas 这种库也都挺常见,你做数值计算和数据。这个压缩包里有详细的代码,可以帮你快速了解如何实现 k-means。主要的代码文件就是kmeans.py,用来实现算法的核心部分。比如,你可以通过main.py加载数据并运行聚类,再用visualize.py做可视化,看看聚类效果。requirements.txt也列出了需要的依赖,适合快速上手测试。如果你是学习大数据或者想知道如
算法与数据结构
0
2025-06-24
密度聚类方法DBSCAN、OPTICS、DENCLUE
基于密度的聚类方法的思路挺巧妙,不靠你事先指定簇的个数,而是看哪里数据密集就往哪儿凑。像DBSCAN、OPTICS、DENCLUE这些算法,都能搞定各种不规则的簇形,噪声点也还不错。
DBSCAN的逻辑蛮:找邻居、看密度,够密就拉进来一起玩,太稀就当噪声。适合用来图片区域、地理坐标、甚至是社交网络的社群划分。
OPTICS就比 DBSCAN 细腻点,在数据密度变化大的时候挺实用,排序之后你再来观察哪里是簇,挺有意思的。
DENCLUE是基于数学密度函数来的,思路有点偏学术,但优势是对复杂数据形态的捕捉更强,适合你那种非均匀分布的数据。
资源方面我翻了下,有不少现成的实现,Matlab、Pyth
算法与数据结构
0
2025-07-02