情节挖掘

当前话题为您枚举了最新的 情节挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

电影分类器_v1.1基于Java的电影情节分类程序
电影分类器_v1.1是一款用Java编写的程序,将文本形式的电影情节进行分类,包括动作、浪漫、喜剧等类型。该程序使用KNN(K-最近邻算法)进行分类,首先从IMDB网站获取每部电影的名称及其流派,然后将电影情节提取到相应的文件中。每个流派(如action.txt、comedy.txt)都包含了相应流派的所有电影情节。利用R脚本进行数据挖掘,程序能够准确地分类每个电影情节。
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
从数据挖掘到网络挖掘 - 概述
数据挖掘(Data mining)是一种简要的概述。文本挖掘(多媒体数据挖掘)、网页挖掘的趋势和研究问题。
深入挖掘数据数据挖掘技术详解
数据挖掘技术在当今技术发展中扮演着重要角色,尤其是在文本挖掘领域。随着信息量的爆炸性增长,数据挖掘技术成为从海量数据中提取有用信息的关键工具。将详细介绍数据挖掘的基本概念、技术原理以及在网络数据分析中的应用。
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
深入探究数据模式:图挖掘与序列挖掘
数据挖掘算法:揭示隐藏关联 数据挖掘领域涵盖多种强大的算法,用于揭示数据中隐藏的模式和关系。其中,图挖掘和序列挖掘是两种特别有效的技术,可应用于各种场景。 图挖掘 图挖掘算法分析数据点之间的复杂关系,这些数据点通常表示为节点和边。此类算法可用于: 社交网络分析:识别社区、影响者和异常行为。 推荐系统:根据用户之间的关系和交互推荐产品或服务。 欺诈检测:发现异常交易模式和潜在的欺诈行为。 序列挖掘 序列挖掘算法分析数据点随时间推移发生的顺序模式。此类算法可用于: 客户行为分析:理解客户旅程并预测未来行为。 生物信息学:识别 DNA 或蛋白质序列中的模式。 预测性维护:根据设备的历史性能数据
关联规则挖掘数据挖掘技术概览
从交易数据库里挖规则,用得挺顺的一份资料,适合你想搞懂关联规则挖掘的来看看。文档里一口气讲了从一维布尔到多维多层的挖掘方式,还捎带聊了相关性,内容够全,节奏也清晰,适合边学边实操。 关联规则挖掘的套路,主要靠频繁项集和支持度置信度的组合。比如,你常见的Apriori 算法,用得多、资料多,学习起来也轻松。配合后面讲的AIGEP 算法,还能应付多维复杂场景,适合项目里玩点花样。 你要是搞WEKA的,可以顺着这份教程练起来,界面操作友好,过程还直观。想试试层级结构的,也别错过多层关联规则这块,挺适合做数据层次的。 嗯,如果你比较关心规则之间的冲突、负向关系,也有加权负关联规则挖掘这种小众内容,虽然
数据挖掘
研究生数据挖掘课程课件,供学习参考。
挖掘IT桔子数据
使用 itjuzi_mining 获取 itjuzi.com 数据 安装: 确保已安装 pip: pip install scrapy 进入项目目录: cd /path/to/ituzi_mining 安装依赖: pip install -r requirements.txt 使用: 启动爬虫: scrapy crawl itjuzi 注意: 使用前请确保您已了解并遵守 itjuzi.com 的相关规定。
论文资料挖掘
使用数据挖掘技术,可高效获取论文资料相关数据。