- 提出一种基于相似度辅助决策的带宽自适应跟踪算法。
- 提高跟踪算法的空间定位准确性,并自适应更新带宽准则。
- 提高算法对目标尺度变化的自适应性,提高空间和尺度定位准确性。
基于相似度的带宽自适应跟踪算法
相关推荐
Matlab开发自适应跟踪引擎
Matlab开发:自适应跟踪引擎。确定在心理声学自适应跟踪期间应如何调整信号。
Matlab
9
2024-09-26
基于TF-IDF的内容相似度算法实现
本项目提供了一个 Python 代码示例,展示了如何使用 TF-IDF 模型计算文本内容的相似度。该算法可用于多种应用场景,例如简单的论文查重等。代码基于他人项目进行修改和优化,仅供学习和参考。
算法与数据结构
14
2024-05-23
基于自适应协作策略的细菌觅食优化算法
针对复杂优化问题的求解,提出一种结合细菌趋化性、细胞间通信和自适应觅食策略的细菌菌落觅食优化算法。该算法通过细胞间通信共享历史搜索经验,有效提升了算法的收敛性。自适应策略允许细菌个体集中深入地探索有潜力的区域,并对其他区域进行更广泛的搜索。通过对经典和组合测试函数集的严格性能分析,以及与四种最新参考算法的比较,验证了该算法的有效性。结果表明,该算法在个体和群体觅食行为上均表现出显著的性能优势,优于现有参考算法。
统计分析
13
2024-07-01
自适应波束算法的Matlab实现
这个程序实现了自适应波束的LMS算法,用于自适应滤波和计算最小均方结果。
Matlab
9
2024-08-01
基于相似度概率的不确定分类数据聚类算法
USqueezer 算法挺适合不确定分类数据的聚类问题。它是基于 Squeezer 算法提出的,核心思想是通过计算不确定数据与每个簇的相似度概率,并比较这些概率值与预设的阈值。如果相似度超过阈值,就把数据划分到那个簇里,不然就会创建一个新簇。这个算法不仅能有效不确定数据的聚类,还能减少内存占用和提高执行效率,适合大数据量时使用。嗯,想要不确定数据的聚类问题的话,USqueezer 还挺不错的,操作也简单。可以尝试一下。USqueezer 算法用起来比较直接,是在像模糊分类数据时,它的性能优势。如果你是做数据聚类的,碰到不确定数据时,可以考虑一下这个方法。不过,还是得注意,如果数据的噪声太多,还
数据挖掘
0
2025-06-24
自适应GSK算法揭秘
了解自适应GSK算法(AGSK)前,先探索其基础——GSK算法。GSK算法灵感源于知识获取与分享的过程。
初级阶段:从小型网络(家人、邻居)获取知识,虽想法不成熟,但积极分享。
高级阶段:从大型网络(工作、社交)获取知识,相信成功者观点,积极分享以助人。
Matlab
17
2024-05-28
自适应谱聚类算法改进
通过提出一种自适应谱聚类算法改进方案,在传统谱聚类算法的基础上,通过自适应调整核函数参数和聚类簇数,提升了算法对任意形状样本空间的聚类性能,实验验证了改进算法的有效性。
数据挖掘
12
2024-05-25
CluFNC数据自适应聚类算法
CluFNC 算法通过结合网格划分、场强计算、自组织映射(SOM)和 Chameleon 算法,在数据中发现自然的聚类特征。它不依赖传统的全局参数,而是能根据数据本身的结构来调整聚类策略,避免了许多传统算法的局限性。是在大规模数据集时,CluFNC 的高效性和灵活性真的有优势,能够更准确地发现数据中的自然分布。
这种方法就像是给数据加了一副“眼镜”,能够让你看到它们的真正结构。你可以通过调整网格大小、噪声阈值等参数,适应不同的数据情况。而且,过程中,它也能自动适应噪声和异常数据,聚类效果还蛮稳定的。
如果你正在一些复杂的数据集,CluFNC 算法的确是一个值得尝试的工具。它不仅可以更好地揭示数
数据挖掘
0
2025-07-01
NumberSimilarity基于Sigmoid的数字相似度计算
数字相似度的计算一直是个老大难,是在需要判定两个数“有多接近”而不是直接比大小的时候。NumberSimilarity用上了sigmoid 算法,这个点子挺妙的。你可以理解成它把两个数之间的差距“压缩”成了一个介于 0 和 1 之间的相似度值。越接近,值越接近 1,挺适合用在分类、推荐、阈值判断这类场景里。
sigmoid本来是神经网络里常见的一种激活函数,这里拿来做距离映射,既直观又好调。你可以自己设定灵敏度,像是k 值就挺关键,调高它相似度响应更陡,适合精度要求高的场景。
实现也不复杂,大致长这样:
function similarity(a, b, k = 1) {
const di
算法与数据结构
0
2025-07-01