CluFNC 算法通过结合网格划分、场强计算、自组织映射(SOM)和 Chameleon 算法,在数据中发现自然的聚类特征。它不依赖传统的全局参数,而是能根据数据本身的结构来调整聚类策略,避免了许多传统算法的局限性。是在大规模数据集时,CluFNC 的高效性和灵活性真的有优势,能够更准确地发现数据中的自然分布。

这种方法就像是给数据加了一副“眼镜”,能够让你看到它们的真正结构。你可以通过调整网格大小、噪声阈值等参数,适应不同的数据情况。而且,过程中,它也能自动适应噪声和异常数据,聚类效果还蛮稳定的。

如果你正在一些复杂的数据集,CluFNC 算法的确是一个值得尝试的工具。它不仅可以更好地揭示数据的内在联系,而且还能提高聚类结果的准确性和效率。