为了解决海量 XML 文档数据挖掘中聚类划分效率低的问题,该研究探索了一种优化 XML 数据聚类方法。通过阐述 XML 键及其聚类定义,并结合混沌运动的特性,提出了一种自适应混沌粒子群算法。该算法能够有效地克服传统聚类方法容易陷入局部最优解的缺陷,并显著提高了 XML 数据聚类的效率和准确性。
自适应混沌粒子群算法优化XML数据聚类策略
相关推荐
自适应粒子群算法Matlab代码分享
我们很高兴能分享用于大规模特征选择的自适应粒子群算法的Matlab代码。如果您在该研究的基础上进行进一步研究,请在您的论文中引用以下参考文献:
Xue, Y., Xue, B., & Zhang, M. (2019). Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification. ACM Transactions on Knowledge Discovery from Data, 13(5), 1-27.
DOI: 10.1145/3340848
请注意,参考文献
Matlab
22
2024-05-14
混沌粒子群算法的优化方法
混沌粒子群算法是将混沌运动与传统粒子群算法结合的一种新型优化方法,其独特的全局搜索能力可以有效提升算法性能。
Matlab
13
2024-09-23
自适应量子粒子群优化算法AQPSOCO含交叉算子
带交叉算子的自适应量子粒子群优化算法(AQPSOCO)其实挺有意思的,是你对聚类这块感兴趣的话,可以仔细看看。它是在传统量子粒子群优化(QPSO)算法的基础上加了点料——比如说加了交叉算子和变异算子,粒子多样性更丰富了,不容易卡在局部最优里。还有一个自适应的收缩-扩张因子更新机制,说白了就是能根据当前阶段灵活调整搜索节奏,挺聪明的设计。常规的 K-Means、层次聚类、DBSCAN 这些聚类方法你肯定用过吧?虽然经典,但在复杂结构或者维度高的数据时总有点吃力。AQPSOCO 就派上用场了,适合需要全局搜索的任务,比如金融、社交网络或者生物信息这类。实现的话可以考虑自己撸一版或者参考下作者的思路
数据挖掘
0
2025-06-18
粒子群算法的优化策略
程序优化中,关键在于如何选择个体最优(pbest)和全局最优(gbest),以及如何根据位置和速度公式有效更新位置和速度。
Matlab
18
2024-07-27
Matlab代码敲击技巧自适应合作粒子群算法解析
Matlab代码敲击自适应合作PSO Matlab的自适应协同粒子群优化算法(ACPSO)算法。简介一种自适应合作粒子群优化器(ACPSO),它通过学习自动机(LA)算法为合作技术提供便利。 ACPSO的合作学习策略可以协同优化问题,并在不同情况下对其进行评估。在ACPSO算法中,与问题的维度相关联的一组学习自动机正试图找到搜索空间的相关变量,并智能地优化问题。 ACPSO的这种集体行为将完成群体成员自适应选择的任务。对四种类型的基准测试进行了仿真,这些基准测试包含一组新的主动坐标旋转测试功能,还包含三个最新的数值优化基准功能。结果显示ACPSO在寻找搜索空间相关变量方面的学习能力,并描述了A
Matlab
18
2024-09-26
CluFNC数据自适应聚类算法
CluFNC 算法通过结合网格划分、场强计算、自组织映射(SOM)和 Chameleon 算法,在数据中发现自然的聚类特征。它不依赖传统的全局参数,而是能根据数据本身的结构来调整聚类策略,避免了许多传统算法的局限性。是在大规模数据集时,CluFNC 的高效性和灵活性真的有优势,能够更准确地发现数据中的自然分布。
这种方法就像是给数据加了一副“眼镜”,能够让你看到它们的真正结构。你可以通过调整网格大小、噪声阈值等参数,适应不同的数据情况。而且,过程中,它也能自动适应噪声和异常数据,聚类效果还蛮稳定的。
如果你正在一些复杂的数据集,CluFNC 算法的确是一个值得尝试的工具。它不仅可以更好地揭示数
数据挖掘
0
2025-07-01
自适应谱聚类算法改进
通过提出一种自适应谱聚类算法改进方案,在传统谱聚类算法的基础上,通过自适应调整核函数参数和聚类簇数,提升了算法对任意形状样本空间的聚类性能,实验验证了改进算法的有效性。
数据挖掘
12
2024-05-25
自适应变异粒子群算法改进BP神经网络
结合自适应变异策略的粒子群算法优化BP神经网络,提高预测精度。
算法与数据结构
14
2024-05-01
基于改进的自适应粒子群优化算法AFPSO在智能优化算法研究中的应用
AFPSO,一种改进的自适应粒子群优化算法,专为新手研究智能优化算法而设计。它通过优化算法的代码,帮助理清算法的逻辑和使用方法,并在解决实际工程问题时得以应用。
Matlab
12
2024-07-25