为了准确预测回采工作面瓦斯涌出量,该研究结合主成分回归分析和BP神经网络原理,利用现场实测数据,通过多元统计分析软件SPSS分析影响瓦斯涌出量的因素之间的相关性,并提取主成分作为BP神经网络的输入参数,构建预测模型。研究结果显示,PCA-BP神经网络模型预测值与实际值的相对误差最大为2.820%,最小为2.036%,平均为2.357%,精度高于其他预测模型。该模型可为降低事故发生率和矿井延深水平提供有效的指导。
基于PCA-BP神经网络的回采工作面瓦斯涌出量预测模型
相关推荐
PCA-BP神经网络在回采工作面瓦斯涌出量预测中的应用
PCA-BP 神经网络在回采工作面瓦斯涌出量预测中应用,挺有意思的。这个方法结合了主成分(PCA)和BP 神经网络,能提高预测的准确度。简单来说,它通过现场数据,找出影响瓦斯涌出的因素,通过主成分提取相关特征,再用BP 神经网络建模预测,效果蛮不错的。与传统方法相比,最大相对误差只有 2.820%,而最小的也只有 2.036%。SPSS也可以用来做数据,提升了整个预测的精度。你如果在矿井瓦斯预测中用这个模型,结果肯定会让你挺满意的。
统计分析
0
2025-06-25
基于随机森林的回采工作面瓦斯涌出预测
引入随机森林算法构建回采工作面瓦斯涌出预测模型,研究表明该模型预测效果较好。
数据挖掘
19
2024-05-01
平岗煤矿1202工作面割煤速度与瓦斯涌出量关系研究
平岗煤矿1202工作面瓦斯含量高,虽已采取瓦斯抽放措施,但在破煤生产过程中瓦斯涌出量依然较大。由于巷道面积和风速的限制,单纯依靠增加风量冲淡瓦斯的方法无法完全满足安全生产的需求。
通过对1202工作面割煤速度与瓦斯涌出量进行统计分析,研究发现两者之间呈现多项式关系,并推导出相应的计算公式。该研究结果可为新工作面割煤的安全高效生产提供理论依据。
统计分析
10
2024-05-15
MATLAB BP神经网络股票预测模型
基于 MATLAB 的 BP 神经网络股票预测项目,真的是一个挺实用的案例。用熟悉的工具,做点靠谱的预测,整个流程也比较清晰,从数据预到模型优化,全都涵盖了。如果你也在做金融相关的模型,用它练练手蛮合适。
MATLAB 的 BP 神经网络股票预测项目,整体结构算是比较完整的。从数据整理开始,比如收盘价、交易量那些,先来一波标准化,清洗干净后喂给网络,学习起来效率高,准确率也更稳。
输入层对应各类股票指标,输出层直接给出预测结果,中间的隐藏层就靠你来调参了,节点多了学得细,少了速度快。你可以先少来几层试试看,响应也快。
训练部分用的是经典的反向传播机制,误差一出来立马回头修正。用train函数跑
Matlab
0
2025-06-26
神经网络技术预测煤矿综采工作面经济指标
基于神经网络的自学习方法,应用人工神经元网络系统理论,在西山煤电集团东曲矿综采工作面的实际资料统计分析基础上,预测工作面的日进度、日产量、回采工效率、坑木消耗、配件消耗等综合技术经济指标,预测结果精确度高,与实际相符。这一研究方法为煤矿综采工作面的计划、生产和管理提供了新的预测决策方法。
统计分析
18
2024-08-09
Matlab基于BP神经网络的煤炭需求预测模型研究
Matlab技术基于双隐层BP神经网络,针对中国煤炭需求进行了模拟分析和预测,通过实际数据验证和分析,预测了未来五年的煤炭需求量。探讨了影响煤炭需求的复杂因素及其非线性关系,提出了一种基于神经网络的高精度预测方法,为煤炭资源管理提供了重要决策支持。
Matlab
9
2024-07-30
遗传算法优化BP神经网络房价预测模型MATLAB实现
想要了解如何用遗传算法优化 BP 神经网络来预测房价吗?这份源码简直是个宝藏,适合想深入机器学习、是神经网络的开发者。通过遗传算法来优化BP 神经网络,能有效传统 BP 网络训练慢、容易陷入局部最优的问题,提高房价预测的准确度。这个模型不仅可以用于房价预测,还能为你理解机器学习中的优化算法好的实践机会。
源码里面详细了如何搭建BP 神经网络,数据怎么准备,以及MATLAB的实现方式。甚至连遗传算法的具体参数(如种群大小、交叉概率等)都做了细致的,方便你上手。还有模型的优化过程、性能评估和结果,你快速理解优化方法。
如果你对房价预测、机器学习算法有兴趣,或者想提升自己的MATLAB技能,真的可以
Matlab
0
2025-06-16
基于预训练模型的BP神经网络数据预测
本代码利用已训练的BP神经网络模型文件 (ANN.mat) 对新的数据集进行预测,计算预测值与真实值的均方误差,并绘制两者对比图以可视化预测结果。
Matlab
18
2024-05-25
基于Elm神经网络的电力负荷预测模型MATLAB源码
介绍了基于Elm神经网络的电力负荷预测模型。首先,利用ELM(Extreme Learning Machine)算法构建神经网络模型,通过训练数据进行预测,进而实现电力负荷的预测。具体步骤包括:
数据准备:将历史电力负荷数据作为输入数据集。
数据预处理:对数据进行标准化处理,以提高模型的准确性。
构建ELM模型:采用单隐层前馈神经网络(SLFN),通过随机生成输入层权重,利用最小二乘法优化输出层权重。
模型训练:使用训练集进行模型训练,优化参数以提高预测精度。
预测与验证:通过测试集进行模型验证,评估其在实际应用中的效果。
该模型具有较好的泛化能力,能够有效提高电力负荷预测的准确性,具有较
Matlab
10
2024-11-05