运用数据挖掘技术,商业银行可挖掘客户数据,分析消费行为,优化营销策略,提升风险管理能力,提高运营效率。
数据挖掘在商业银行应用研究
相关推荐
商业银行中数据挖掘技术的应用研究
商业银行中有多种数据挖掘技术的应用方法正在研究中。
数据挖掘
16
2024-07-17
数据挖掘在商业银行客户关系管理中的应用研究(2014年)
基于数据挖掘的商业银行客户关系管理
在数据时代,数据挖掘技术为商业银行客户关系管理带来了新的契机。该研究从客户关系管理的基本原理出发,结合商业银行的特殊性,探讨了数据挖掘在商业银行客户关系管理系统中的应用。
数据挖掘
17
2024-04-30
商业银行客户关系管理中的数据挖掘应用
商业银行客户关系管理中的数据挖掘应用,这篇内容充实而详尽,适合作为数据挖掘课设的优秀参考资料。
数据挖掘
14
2024-09-13
数据仓库商业银行IT系统
数据仓库的三层架构思路挺清晰的,抽取、管理、一条龙搞定,适合银行这种数据量爆炸的业务场景。ETL 那块讲得蛮细,尤其是增量更新和调度监控,做得不好的话,光是数据同步就能把你拖死。数据存储用了经典的ODS-DW二层结构,支持多维,查询也快,像Oracle、Teradata这些老牌数据库都在用这套思路。主题清晰、数据稳定,做 BI 再合适不过了。和展示层用了OLAP和数据挖掘配合,像SAS那套行为计分和申计分机制,用数学模型动态调整授信额度,还能找出高价值用户,这操作可以说是“懂业务+懂技术”的典范。工具方面也挺全,ETL 有Informatica、DataStage;这块有Business Ob
数据挖掘
0
2025-06-17
商业银行IT系统中的数据仓库应用
商业银行IT系统中的数据仓库涵盖了数据的抽取、存储和管理、以及数据的分析和展现三个关键技术层面。数据抽取层负责ETL过程的设计和实施,确保数据加载和更新。存储和管理层采用ODS-DW结构,支持多维查询和包括业务数据和元数据的稳定存储。数据分析和展现层提供OLAP和数据挖掘技术,利用人工智能和统计分析发现并预测隐藏在历史数据中的规律。
数据挖掘
11
2024-09-13
NJW在离群数据挖掘中的应用研究
Web 序列模式挖掘的玩法挺有意思,WAP 算法算是老牌选手了,不过论文研究-NJW 在离群数据挖掘中的应用研究.pdf里讲了个小改进,挺实用。嗯,少了条件树那道坎,跑得快,代码也简单,适合做二次开发。
序列模式挖掘里,PrefixSpan也比较火,跟 WAP 对比着学效果更好。要是用Python撸个小工具,推荐看下Python 编程实现序列模式挖掘算法,样例清晰。
搞离群数据挖掘,别忘了性能,改算法的时候多打点日志,看看运行时间和内存。哦,对了,顺手可以看下序列模式挖掘研究综述,对比一下方法。
如果你要在生产上跑,记得条件树越少越稳,数据量大的话,不如先用PrefixSpan跑小样本测测。
数据挖掘
0
2025-06-29
商业银行IT系统技术栈概览
商业银行的系统技术栈,还真挺有年代感的,但也有不少技术现在依然吃香。像J2EE和COBOL,在银行核心业务系统里,至今还活跃着。嗯,虽然听起来有点老派,但稳定性和吞吐量是真顶。搞报表、OA 那一块,多时候就上了.NET、VBA甚至NOTES这种轻量级技术,响应快、开发也省心,适合非交易类的轻量系统。要说未来几年银行 IT 里比较火的,应用整合肯定是主角。像ESB、SOA、TIBCO这类构件化平台,用来打通各类业务子系统,效果还不错。你在搞系统对接或者老系统改造,基本都得碰。BPM和工作流也越来越刚需了,是在信贷、审批这些流程里,配个像Biztalk、FileNet这种平台,流程走得顺,改规则也
数据挖掘
0
2025-06-25
商业银行IT系统常用技术浅析
商业银行IT系统架构复杂,技术应用广泛。在业务和交易系统层级,J2EE、C、COBOL(大机)、PRG(400平台)、PL/SQL、CICS、TUXEDO、MQ等技术扮演着关键角色。而在OA、报表展示等低端应用场景,NOTES、VBA、JSP、PASCAL、.NET等也占据一席之地。
展望未来,以下技术将成为商业银行IT系统发展的重要趋势:
应用整合与构件化: ESB、EAI、SOA、TIBCO等技术推动系统互联互通,提升业务敏捷性。
流程化与自动化: 影像工作流、BPM、内容管理技术优化信贷审批、作业中心等业务流程,提高效率。
智能化与数据驱动: 规则引擎技术应用于信用卡反欺诈、反洗钱
数据挖掘
15
2024-05-25
数据挖掘理论与应用研究综述
数据挖掘作为一门从海量数据中提取有用信息的交叉学科,近年来发展迅速,并在各个领域得到广泛应用。将对数据挖掘技术进行全面概述,涵盖其起源、定义、发展历程、研究内容、主要功能、常用技术、常用工具以及未来研究方向等方面。
一、 数据挖掘概述
数据挖掘技术的起源与发展背景
数据挖掘的定义及内涵
数据挖掘的研究历史、现状及发展趋势
数据挖掘的研究内容、本质及与其他学科的关系
二、 数据挖掘技术
数据挖掘的主要功能和目标
常用的数据挖掘技术:关联规则挖掘、分类与预测、聚类分析、异常检测等
各种数据挖掘技术的优缺点比较
不同数据挖掘技术在实际应用中的选择策略
三、 数据挖掘工具与平台
常用的数据挖
数据挖掘
14
2024-07-01