想对评论做情感?pysentiment库帮你搞定!它通过 API 将评论文本转换为情感评分,输出结果清晰,适合各种项目。只需要准备好文本数据,就能轻松生成情感结果,甚至生成对应的表格。对于想做数据挖掘或者评论的小伙伴来说,这个工具真是个宝。
例如,你可以拿微博的评论、酒店的评价、甚至电影评论数据,它们的情感极性。操作上也直观,只要引入pysentiment
库,调用相关方法,就能快速上手。
需要注意的是,pysentiment的是基于词典的,对一些领域特定的词汇反应不够灵敏,所以还需要根据实际情况调优。
如果你做评论、舆情监测等,pysentiment库绝对能提高你的工作效率,推荐试试看!
PySentiment情感评分库
相关推荐
分库分表实战项目
本项目包含了 MySQL 分库分表和读写分离的完整解决方案,采用 IDEA 开发,提供数据库结构和示例源码。
MySQL
9
2024-04-30
基于情感词进行文本情感分析代码的优化
在自然语言处理(NLP)领域,情感分析是一项重要任务,涉及对文本进行分析,提取其中的情感色彩,如正面、负面或中性情绪。本项目名为“根据情感词进行分析《文本情感分析代码》”,其核心目标是利用特定的算法和技术来进行分词和分句处理,并对词汇和句子进行情感评分。分词是情感分析的第一步,依赖于词典和统计模型,如jieba分词库、HMM和CRF等机器学习方法。分句使用NLTK中的PunktSentenceTokenizer和结巴分词的句子切分功能。情感词典如SentiWordNet、AFINN和SnowNLP用于快速打分,计算情感词的频率和情感强度。情感评分基于词典匹配和词权重加权求和,利用词向量和预训练
算法与数据结构
17
2024-07-23
信用评分建模资料
信用评分的资料还挺全的,尤其是像鹏元 800这样的评分系统,能直接把个人信用打成分。建模方式也比较丰富,不止看违约,还能用来做响应度、忠诚度之类的。适合搞风控、信用卡审核、额度核定这些业务场景的同学参考下。
信用风险评分卡那篇文章讲得挺细,适合刚入门的朋友看看,能帮你理清评分卡设计流程。用SAS建模的那篇指南也不错,虽然界面老旧,但思路实在。
如果你用的是R 语言,别错过那篇“使用 R 语言信用评分数据的技巧”,里面提到的逻辑回归、WOE 编码都蛮实用。还有一篇九种机器学习模型建信用卡评分的文章,想搞点花活的可以看看。
做数据科学或者数据挖掘的朋友也有料,比如信用欺诈模型、风控建模流程。你还可
统计分析
0
2025-06-15
中文负面情感词语
这份包含1254个中文负面情感词语的资源,来源于微博,适用于情感分析等研究领域。
spark
11
2024-05-23
构建语音情感库
构建原则:
真实性:从日常语料中采集,保证真实性。
交互性:选择人们常用的语句,贴近真实情感。
连续性:选择情感转移多样的语料。
丰富性:利用表情、肢体等方式模拟情感,创造情感氛围。
语料来源:
筛选自然情感语料:从日常生活对话、影视作品等获取。
模拟情感语料:由专业播音员按照要求模拟情感。
诱导情感语料:通过制造情感氛围,引导说话人自然表达情感。
算法与数据结构
23
2024-05-26
情感分析资源下载
在技术领域,情感分析是一项重要的自然语言处理任务,涉及对文本情感倾向的判断,如积极、消极或中性。关注利用支持向量机(SVM)算法对微博评论进行情感分类,详细介绍了SVM及其在Python环境中的实现过程。SVM是监督学习模型,广泛用于分类和回归分析。在情感分析中,SVM通过最优超平面将不同情感类别的文本分隔,最大化样本间的间隔以实现最佳分类效果。其优势在于处理高维非线性问题,通过核函数映射转换数据至可线性分离形式。Python中,使用Scikit-learn库实现SVM,包括文本预处理(如去除停用词、标点、词干提取或词形还原)及数据转换(如TF-IDF或词袋模型)。分为训练集和测试集,训练SV
算法与数据结构
15
2024-07-22
情感分析词典资源汇总
情感项目的词典资源用过不少,这份整理真的挺全。常用的知网 HowNet、中文极性词表、PySentiment都有,甚至连微博情感标注、语音情感库也收录了。你要是做文本情感分类或者评论情绪识别,用它打底蛮稳的。
情感词典的种类覆盖挺广,从词语极性到语音特征,你可以按项目需求自由组合。比如想做短文本,中文负面词语就蛮实用的;要是搞社交平台内容,那个微博评论情感标注也别错过。
用PySentiment的好处是可以直接嵌到Python代码里跑模型,省不少时间。嗯,如果你还在做Spark流程,文档里那篇Spark 文本情感指南也比较清晰,挺适合大规模数据。
几个资源都是.zip格式的词典包,下载完解压就
数据挖掘
0
2025-06-16
情感分析工具包应用于NLP领域的情感分析
Aspect Based Sentiment Analysis任务是为多个方面的潜在长文本分类情感。关键思想是构建一个现代化的NLP工具包,支持解释模型预测。近似的决策解释帮助您推断预测的可靠性。该工具包独立、可扩展,并可根据您的需求自由扩展。我们在文章中总结了这些想法。
统计分析
12
2024-08-14
使用ShardingSphere实现MySQL分库分表操作实例
ShardingSphere是一个开源的分布式数据库中间件解决方案,提供数据分片、分布式事务和数据库治理功能。它包括三个独立但可协作使用的产品:JDBC、Proxy和Sidecar。ShardingSphere-JDBC作为增强型JDBC驱动,与JPA、Hibernate、Mybatis、Spring JDBC Template等ORM框架兼容,并支持多种数据库连接池,如DBCP、C3P0、BoneCP、Druid、HikariCP。数据库分库分表是解决数据库压力的有效策略。当读写分离、索引和缓存等优化手段不足以应对高负载时,可以考虑数据库拆分。拆分包括垂直拆分和水平拆分。垂直拆分根据业务逻辑
MySQL
17
2024-09-23