时间序列挖掘是个相对复杂的领域,但其实有不少挺实用的算法和工具可以搞定。比如,STUMPY这个 Python 库就是一个高效的时间序列数据挖掘工具,适合进行相似度。如果你需要进行模式挖掘,PrefixSpan算法就蛮不错,它可以你在大数据中快速发现序列模式。Matlab方面也有多时间序列的代码,可以参考一下,快速实现一些基础的功能。另外,如果你对聚类感兴趣,基于时间序列的聚类算法也是一个不错的选择,能你从复杂数据中挖掘出有用的信息。你可以根据具体需求挑选合适的算法,组合起来会更高效哦。
时间序列挖掘算法研究与应用
相关推荐
多变量时间序列的模糊决策树挖掘研究
针对当前时间序列决策研究方法存在的问题,提出了多变量时间序列模糊决策树挖掘方法,并通过实验分析验证了该方法能够有效捕捉多变量时间序列子序列的形态及后期趋势或状态的决策信息。
数据挖掘
13
2024-07-17
时间序列数据挖掘:特征表示与相似性度量研究方向
时间序列数据挖掘:特征表示与相似性度量研究方向
本研究深入探讨时间序列数据挖掘领域中特征表示和相似性度量的关键作用。通过对现有主要方法的全面回顾与分析,揭示其各自的优势和局限性,并在此基础上展望未来研究方向,为时间序列数据的特征表示和相似性度量研究提供新的思路。
数据挖掘
13
2024-05-25
进化算法在时间序列分割中的距离度量优化研究
时间序列分割是对时间序列数据进行分析和挖掘的重要方法之一。在给定标准模式的情况下,进化算法能够根据这些模式优化距离度量,以提高分割效果。
数据挖掘
7
2024-08-08
序列模式挖掘研究综述
对序列模式挖掘的研究进行概述,涵盖其相关概念、常用方法、代表性算法及其优缺点分析,并展望未来发展方向,为研究者改进现有算法和开发新算法提供参考。
数据挖掘
9
2024-05-16
基于多维时间序列数据挖掘的降雨天气模型研究
多维时间序列数据挖掘是信息科学领域的一个重要研究方向,尤其在气象数据处理和天气预测方面有广泛应用前景。以研究降雨天气模型为背景,介绍了基于极值斜率分段线性拟合法的多维时间序列数据挖掘方法,展示了通过聚类数据挖掘技术分析气象数据,提炼出降雨与气象要素关系,并建立实用降雨天气模型。文章详细说明了多维时间序列和其在气象要素变化记录中的应用,强调了气象学研究及气候预测的重要性。作者提出新的多维时间序列数据挖掘模型,揭示多种气象要素间复杂的非线性变化趋势。还介绍了数据预处理过程,包括气象要素数据库创建、数据规范化和维度选择等步骤。在建立降雨天气模型时,作者强调了分段线性拟合法、聚类数据挖掘技术及规则提取
数据挖掘
8
2024-09-13
动态时间弯曲算法应用于时间序列异步相关性分析
时间序列数据挖掘中,相关性分析至关重要。为突破传统方法仅限于同步相关性分析的局限,本研究提出了一种基于动态时间弯曲 (DTW) 的时间序列异步相关性分析方法。该方法利用 DTW 算法获取时间序列数据的最优弯曲路径,并将路径元素扩展为反映原始时间序列异步相关性的新序列。通过计算新序列之间的相关系数,可以有效地度量原始时间序列的异步相关性。数值实验结果表明,该方法扩展了时间序列数据的相关性分析研究,并具有较强的鲁棒性。
数据挖掘
13
2024-05-19
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用
数据挖掘
11
2024-08-31
深入了解时间序列分析与数据挖掘
可以很好的理解时间序列分析和数据挖掘的概念及其在实际中的应用,对我们具有重要意义。
数据挖掘
19
2024-07-16
Time Series Analysis and Applications时间序列分析与应用
统计时间序列的入门书里,UNSW MATH 这本教材算是比较经典的。覆盖面广,讲得不深奥,适合刚接触时间序列的你。内容偏实用,讲了多现实例子,像医疗、工程、经济这些方向的都能用得上。
时间域和频率域的方法它都讲了,思路比较清晰,不会上来就整一堆公式吓人。理论部分点到为止,实战为主,读起来不会头大。你要是经常跟时间序列打交道,比如搞预测、做模型,拿它来当参考书也挺合适。
另外我找了些跟这本书相关的资源,想深入一点的可以顺着看:时间序列预测法、Pandas 时间序列数据、Matlab 时间序列代码这些都挺实用。
如果你是用Stata、SPSS之类做统计的,也有专门的资源讲怎么结合时间序列用工具,像
算法与数据结构
0
2025-06-17