时间序列分割是对时间序列数据进行分析和挖掘的重要方法之一。在给定标准模式的情况下,进化算法能够根据这些模式优化距离度量,以提高分割效果。
进化算法在时间序列分割中的距离度量优化研究
相关推荐
基于关键点的时间序列相似性度量方法研究
传统的时间序列相似性度量方法直接在高维原始序列上进行计算,存在计算量大、效率低的问题。为此,提出一种基于关键点的时间序列相似性度量方法。该方法首先设计一种新的关键点提取算法,该算法不仅可以有效提取非单调序列的关键点,还可以准确识别单调序列的关键点。通过关键点提取,可以有效压缩时间序列的维度,保留序列的整体形态特征。在此基础上,提出一种新的基于关键点的时间序列相似性度量算法,该算法能够计算任意长度的时间序列的相似度,降低了相似性度量对人为设定阈值的依赖,增强了算法的鲁棒性。实验结果表明,与传统方法相比,该方法能够有效提高时间序列相似性度量的效率和精度,为时间序列数据挖掘中的聚类和预测任务提供有效
数据挖掘
20
2024-05-25
时间序列挖掘算法研究与应用
时间序列挖掘是个相对复杂的领域,但其实有不少挺实用的算法和工具可以搞定。比如,STUMPY这个 Python 库就是一个高效的时间序列数据挖掘工具,适合进行相似度。如果你需要进行模式挖掘,PrefixSpan算法就蛮不错,它可以你在大数据中快速发现序列模式。Matlab方面也有多时间序列的代码,可以参考一下,快速实现一些基础的功能。另外,如果你对聚类感兴趣,基于时间序列的聚类算法也是一个不错的选择,能你从复杂数据中挖掘出有用的信息。你可以根据具体需求挑选合适的算法,组合起来会更高效哦。
数据挖掘
0
2025-06-17
论文研究数据挖掘技术在DNA序列分割中的应用
DNA 序列分割的研究,数据挖掘技术用得挺溜的,尤其是那种能从海量序列中扒出规律的算法,真不赖。PDF 文档讲得比较系统,从基本原理到常用方法,像PrefixSpan、傅立叶功率谱这些技术也都有提到。你要是碰巧做生信相关的前端可视化,顺手看看这类算法结构,说不定会有灵感。Matlab那块也有代码示例,虽然不是前端代码,但懂点逻辑也有。
序列数据里的模式不好抓,尤其像 DNA 这种长又杂的字符串。文档里提到的序列模式挖掘和时间序列平滑方法,其实蛮多能借来在前端搞些动画数据预测啊、用户轨迹还原啥的。尤其你要做可视化组件,可以考虑把结果在D3.js或ECharts里展示,数据结构也好。
推荐你顺带看
数据挖掘
0
2025-06-16
AutoPlait算法的实施共同进化时间序列的自动挖掘
AutoPlait是一个创新的自动数据挖掘算法,由Yasuko Matsubara、Yasushi Sakurai和Christos Faloutsos于2014年在SIGMOD上发表的论文中提出。该算法针对共同演化的时间序列(例如动作捕捉传感器的数据、网页点击、社交网络中的用户行为)提供了高效、自动化的分析方法。这个算法的应用包括BTC时序分析、数据可视化和用户行为统计分析。本repository是HIT-2012级软件工程-算法课的自选课程设计之一,探索海量时间序列数据集合中的典型模式。
数据挖掘
13
2024-07-13
基于多维形态特征的时间序列相似性度量方法研究
论文研究 - 基于多维形态特征表示的时间序列相似性度量。时间序列的特征表示和相似性度量是数据挖掘的核心基础,其质量直接影响后期挖掘的成效。提出一种通过正交多项式回归模型对时间序列进行多维形态特征表示的方法。该方法分析了特征维数对时间序列拟合效果的影响,并通过选取关键特征来捕捉序列的主要趋势,形成一种鲁棒的形态特征相似性度量方法,从而提升相似性度量的质量。实验结果显示,该方法不仅满足下界要求,且具有良好的下界紧凑性和数据剪枝效果,在时间序列聚类和分类等数据挖掘任务中表现出色。
数据挖掘
18
2024-10-28
HBase在时间序列数据库中的应用与优化
HBase 在时间序列数据库中的应用,可谓是大数据领域中的一大亮点。你知道时序数据需要高效的读写性能吧,HBase 作为底层存储,能够相对比较强的扩展性和高吞吐量,适合海量数据存储。你也许会问,为什么选择 HBase 而不是其他数据库呢?因为它在分布式存储上具有优势,支持海量数据高效读写,适用于时间序列场景。而 HiTSDB 这类基于 HBase 的时序数据库,它的优化更是针对时间序列的特点,让你在时序数据时,性能和效率都能更上一层楼。,HBase 在时序数据的场景中,不仅能够确保数据的高效存储,还能良好的扩展性,挺适合需要实时大量数据的场景,像是 IoT、大数据等。你如果有类似需求,可以尝试
Hbase
0
2025-06-11
时间序列模拟ARFIMA模型在MATLAB中的应用
本代码利用自回归分数积分移动平均(ARFIMA)模型进行时间序列模拟,该模型结合了ARIMA(自回归积分移动平均)和ARMA(自回归移动平均)的特点。ARFIMA模型允许使用非整数差分参数,特别适用于长记忆时间序列的建模。通常情况下,该代码执行ARFIMA(p,d,q)模型的模拟,其中d表示差分参数,p和q分别表示自回归和移动平均的阶数。
Matlab
14
2024-09-27
时间序列数据挖掘:特征表示与相似性度量研究方向
时间序列数据挖掘:特征表示与相似性度量研究方向
本研究深入探讨时间序列数据挖掘领域中特征表示和相似性度量的关键作用。通过对现有主要方法的全面回顾与分析,揭示其各自的优势和局限性,并在此基础上展望未来研究方向,为时间序列数据的特征表示和相似性度量研究提供新的思路。
数据挖掘
13
2024-05-25
模糊数学在时间序列分析中的应用及其实证研究(2010年)
为了解决实际研究中模糊数据设定不精确的难题,采用了模糊数学方法。模糊度的引入强调了数据变量模糊化的重要性,定义了模糊变量及其时间序列,并通过计量经济学和数据挖掘案例展示了模糊化处理的必要性。研究表明,许多数据确实具有模糊特性,而模糊变量时间序列的应用有助于建立更客观的计量模型和进行时间序列挖掘。模糊变量时间序列的提出对计量经济学和数据挖掘领域具有重要的参考价值。
数据挖掘
11
2024-08-08