决策树的图太复杂?SAS/EM 的决策树浏览工具你得试试。树长得再“枝繁叶茂”,它也能帮你一目了然地梳理清楚。图形化界面+统计汇总,又快又准,适合大型数据集,尤其是电信、金融这些行业的业务建模场景。
SAS/EM决策树浏览器数据挖掘应用
相关推荐
SAS/EM 决策树可视化浏览工具
SAS/EM 提供决策树浏览工具,可帮助用户查看和分析复杂的决策树架构,包括决策树摘要表、导航浏览器、图形显示和评价图表。
数据挖掘
11
2024-05-25
SAS/EM决策树可视化探索
SAS/EM决策树可视化探索
SAS/EM 决策树模型可能会生成复杂的结构,为了便于理解和应用,SAS/EM 提供了可视化浏览工具,帮助用户高效地解读决策树。
主要工具包括:
汇总表: 展示决策树的基本信息和统计数据。
导航浏览器: 提供交互式界面,方便用户浏览决策树的各个节点。
图形显示: 以图形化方式呈现决策树结构,清晰直观。
评价图表: 展示决策树的评估指标,帮助用户判断模型的性能。
通过这些工具,用户可以深入了解决策树的构建过程和结果,从而更好地应用于实际决策中。
算法与数据结构
11
2024-04-30
数据挖掘决策树
利用 C++ 实现决策树,可导入文本数据源,动态进行决策分析。
数据挖掘
9
2024-05-01
数据挖掘决策树算法
决策树基本概念
一种树形结构,用于表示一个目标变量和一个或多个特征变量之间的关系。
节点代表特征,分支代表决策,叶节点代表分类结果。
决策树算法
一种分类和回归的监督学习算法。
通过递归分割数据,创建决策树。
常用的决策树算法包括 ID3、C4.5 和 CART。
决策树研究问题
预测:基于给定的特征,预测一个目标变量的值。
分类:将数据点分配到预定义的类别。
回归:预测连续变量的值。
主要参考文献
决策树的原理与应用
决策树算法的实现
数据挖掘
11
2024-04-30
数据挖掘中的决策树应用
决策树是一种预测模型,用于映射对象属性与对象值的关系。每个节点代表一个对象,分叉路径表示可能的属性值,叶节点对应路径上的对象值。决策树通常只有单一输出,若需要多输出,可建立多个独立的决策树。在数据挖掘中,通过训练数据分析属性对结果的影响大小,利用信息增益理论和熵概念实现决策树构建。决策树技术广泛应用于数据分析和预测,如银行用于贷款风险预测。
数据挖掘
12
2024-07-21
探讨数据挖掘决策树
学习Clementine的学生特别关注数据挖掘决策树的研究,这是他们学习过程中的重点。
数据挖掘
10
2024-08-03
决策树数据挖掘论文合集
这份论文集汇集了有关数据挖掘中决策树的精选研究,为从事该领域的朋友们提供参考和启发。
数据挖掘
12
2024-05-23
数据挖掘技术——决策树算法
描述数据挖掘中的一种方法——决策树算法,虽然内容为英文,但通过图示可清晰理解。
数据挖掘
10
2024-07-17
数据挖掘技术决策树的延伸与应用
决策树是一种类似树形结构的流程图,每个内部节点代表在一个属性上的测试,树枝描述测试结果,叶子节点指明分类或分类的分布情况。构造决策树的方法采用自上而下递归的方式:如果训练例子集合中的所有例子是同类的,则将其作为一个叶子节点,节点内容为该类别的标记;否则,根据某种策略确定一个测试属性,并按属性的各种取值把实例集合划分为若干个子集合,使每个子集上的所有实例在该属性上具有相同的属性值。然后,再依次递归处理各个子集,直到得到满意的分类属性为止。
Hadoop
8
2024-08-14