C&RT 分类回归树挺好用的,尤其适合需要快速构建决策树模型的场景。通过不断地分裂数据集,C&RT 可以实现分类或回归任务,效果蛮不错的。适合那些在数据集比较大、特征较多的情况下做特征选择和预测的任务。你可以用它来做一些比如客户分类、价格预测这类应用。嗯,代码也相对简单,不会有大的学习曲线,比较适合入门者。要注意的是,C&RT 对数据的噪声敏感,需要做一定的预来提高模型的准确度。
CART分类回归树数据挖掘讲义
相关推荐
CART分类回归树C++实现
C++写的CART 分类和回归树实现,结构清晰、代码不啰嗦,挺适合拿来学习算法或者搞个项目原型的。
源码目录规整,数据格式要求也不复杂。训练数据和测试数据都用一种类似label feature:value的方式,特征值如果是 0 就干脆不写,省空间也快不少。嗯,挺合理。
标签从 1 开始编号,比如 4 类问题,就用 1、2、3、4。特征 ID 也得升序排,像1:0.3 3:0.5 7:0.1这样,不然读取会出问题。适合你自己生成数据喂模型,也方便测试。
回归和分类都能搞定,写法偏底层,适合熟悉算法逻辑。你想看 C++里怎么实现二叉树分裂、Gini 系数这些,那这套代码还挺不错的。
还有几个相
数据挖掘
0
2025-06-16
论文研究基于分类回归树CART的汉语韵律短语边界识别
说到 K-means 聚类,你一定知道它在数据挖掘中的重要性。可是,K-means 需要人工设定聚类个数,这点真的挺麻烦的,尤其是对大数据集来说,容易陷入局部极优。那如果有个办法能自动这个问题呢?好消息是,基于最近共享邻近节点的 K-means 聚类算法(KSNN)就能做到这一点!它通过搜索数据集的中心点,自动确定聚类个数,而且在全局收敛性上比传统的 K-means 要好得多,效果还不错哦。实验证明,KSNN在多算法中表现最好,比如 K-means、粒子群 K-means(PSO)和多中心聚类算法(MCA)都不如它!你可以参考相关的文章,了解更多关于 K-means 算法以及其他聚类技术的应用
数据挖掘
0
2025-07-02
CART回归树生成与剪枝分析04
回归树的生成讲的是怎么一步步长出那棵“聪明”的树。节点分裂挺关键,选错了方向,模型就学偏了。这里还提到了剪枝,嗯,就是砍掉一些“没啥用”的分支,让树别长得太复杂。要是你在做回归、接触CART模型,那这篇算是个不错的补充。里面的资源也比较实用,像C++实现、MATLAB 噪声工具、还有剪枝策略的,能帮你快速理解每一步的来龙去脉。
数据挖掘
0
2025-06-24
WEKA数据挖掘:分类与回归详解
WEKA数据挖掘:分类与回归详解
在WEKA平台中,分类和回归功能都被整合在“Classify”选项卡下。
核心概念:
Class属性: 作为预测目标的属性,其类型决定了任务是分类还是回归。
若Class属性为分类型,则任务为分类。
若Class属性为数值型,则任务为回归。
训练集: 包含已知输入输出数据的数据集,用于模型训练。
操作流程:
数据预处理: 对原始数据进行清洗、转换等操作,以适应算法需求。
模型建立: 选择合适的分类或回归算法,并使用训练集进行模型训练。
模型评估: 通常采用10折交叉验证等方法评估模型性能。
模型应用: 使用训练好的模型对新的、未知输出的数据集进行
数据挖掘
16
2024-05-27
数据挖掘决策树分类算法入门
分类算法的决策逻辑讲得挺清楚的,适合刚上手挖掘任务的前端伙伴们了解一下基础套路。文章从决策树的结构讲到模型训练、评估,再结合实际业务,比如怎么给自行车厂商精准投放广告,案例也比较接地气。你要是之前对什么是决策树、什么是训练集这些概念还迷糊,看这篇就对了。
数据挖掘
0
2025-06-29
CART决策树算法在数据挖掘中的应用研究
分类与回归树CART算法是数据挖掘技术中重要的算法。依据CART算法理论,采用类型变量求解决策树,并引入优化的分裂函数。然后,利用基于类型变量的论域划分创建二叉树,抽取和筛选预测准则,从而为职能部门决策提供科学而可靠的依据。最后,以贵州师范大学教学与管理中的数据,给出算法的应用实例。
数据挖掘
10
2024-10-31
数据挖掘算法分类与聚类回归区别解析
几种数据挖掘算法的区别,真的是多人一开始搞不太清楚。分类和聚类,听着像亲戚,其实做的事不一样。前者是“你早知道你有几个篮子”,比如给客户打标签;后者是“我也不知道你们该归哪,先看相似的抱一块”。预测和回归也一样,都是预测未来数据,差别是一个关注“它属于哪类”,一个关心“它是多少”。蛮适合你在做用户行为或销售预估时用,模型选得对,结果真的能帮你省不少功夫。
WEKA 的分类与回归那篇教程讲得还挺细,从怎么喂数据到模型评估都有,适合刚上手的朋友;点这看详细。
另外逻辑回归也挺好用,尤其是你做一些二分类的问题,比如是否购买、是否流失,逻辑回归够快,解释性也不错;这篇也可以看看,讲得蛮清楚。
如果你刚
数据挖掘
0
2025-07-02
决策树学习数据挖掘分类与预测应用
决策树学习在数据挖掘领域挺常见的,应用也蛮广泛的。它通过树形结构来进行决策过程的模拟,可以从数据中发现隐藏的规律。是在分类问题上,决策树算法的表现还不错。你可以在数据挖掘中使用决策树,来对数据进行分类预测,或者做特征选择,这样能大大提升模型的准确性。举个例子,如果你要银行客户是否会贷款,可以根据客户的收入、年龄等数据来建立一个决策树模型,帮你做出判断。如果你对这方面感兴趣,可以看看这些资源:数据挖掘决策树,和数据挖掘课程设计中决策树算法的应用。,决策树是一种比较简单易懂,但应用起来挺有用的算法。如果你想了解更多,可以深入阅读一些相关的文章或参考代码,能你更好地掌握这项技术。
数据挖掘
0
2025-07-01
深入探索数据挖掘核心算法:CART详解
数据挖掘十大经典算法之CART
第十章 CART
本章深入探讨数据挖掘十大经典算法之一:CART。内容基于 The Top 10 Algorithms in Data Mining 教材第十章,以23页的篇幅对CART进行详细阐述,涵盖16个小节,并采用英文讲解。
数据挖掘
15
2024-05-23