数据的通用框架+实用代码,基本功稳扎稳打的一份资源。用 Python 搞的时候,不知道怎么开局、怎么预、怎么画图?直接拿这份代码参考下,思路清晰,还能顺手复制用。尤其适合刚入门、或者要做临时数据展示的场景。逻辑结构也清楚:从读取数据、清洗,到统计、可视化,每一步都不落。你要是有自己的数据,套进去改改就能跑。
数据分析案例代码Python数据处理与可视化
相关推荐
Python数据分析与可视化示例
首先,通过设定随机数种子确保结果的可重复性。然后生成了一个在0到10之间等间隔的x轴数据x,以及基于线性关系加上正态分布随机噪声的y轴数据y,并将其组合成一个DataFrame。接着计算了数据中y的最大值、最小值和标准差等统计信息。在绘图部分,绘制了数据的散点图,并通过多项式拟合得到拟合直线并绘制出来。最后,在图上添加了显示最大值、最小值和标准差的文本标注。整体展示了如何使用随机生成的数据进行数据分析,包括数据可视化、拟合以及统计信息的呈现。
统计分析
23
2024-10-31
Python数据分析:股票分析与可视化
分析上市公司股票财务指标,如流动比率、资产负债率等。
使用Matplotlib绘制统计图,包括折线图、条形图、柱状图、散点图。
利用Jupyter Notebook进行交互式数据分析和可视化。
运用NumPy、Pandas和Matplotlib进行数据处理和图形绘制。
数据挖掘
12
2024-04-30
Hadoop数据处理与可视化案例
MapReduce 的数据能力,配上 Hive、Flink 和 Kafka,能搞出一整套从采集、预到可视化的完整流程。湛江链家的房价数据就是这么被拿来“开刀”的,用 Hadoop,ECharts 展示,效果还挺直观。你要是刚好在琢磨怎么用大数据工具链搞项目,这个案例值得一看,跑通之后收获还挺多的。
Hadoop
0
2025-06-15
挖掘社交网络Python数据分析与可视化
挖掘社交网络这本书其实蛮适合前端开发者,是你有兴趣了解社交数据背后的深层信息。书里讲了怎么通过社交网络数据,像 Facebook、Twitter 和 LinkedIn,找到有价值的联系、话题和位置等。它的优点是内容简洁又操作性强,适合有一定编程经验的开发者,尤其是如果你刚好对 Python 感兴趣的话。书中的技巧比较实用,你会学到如何将社交数据可视化,你发现那些一直被忽略的宝藏数据。每章内容都会针对不同的社交领域展开,像博客和邮件。说实话,这本书是你想进入数据挖掘领域时一个不错的起步点。嗯,如果你刚开始接触这些,学习 Python 的基本工具就挺重要的,其他就交给这本书吧。
数据挖掘
0
2025-06-24
Python实现地铁数据分析与可视化
这个Python项目涉及到爬虫技术,用于采集中国各大城市的地铁信息,并进行详细分析和可视化。项目的主要功能包括:1. 使用爬虫获取各城市地铁线路数据,并保存为CSV文件。2. 将CSV文件转换为Pandas DataFrame,便于后续数据处理。3. 分析每个城市的地铁线路数量分布,绘制相应的图表。4. 探索各城市中地铁站数最多的地铁线路。5. 统计各城市地铁站数,并生成地铁名词云。6. 分析中国地铁站名称中最常出现的字,并绘制柱状图。
统计分析
11
2024-07-13
Python Pandas数据处理与可视化指南
黑科技的 Pandas 库,简直是数据界的瑞士军刀。不管你是刚入门的 Python 小白,还是搞数据的老司机,用它清洗、整理、建模都挺顺手的。这篇文章讲得还蛮细,DataFrame、Series怎么用、怎么画图、怎么补缺失值,基本全覆盖了。
DataFrame 的表格结构像极了 Excel,但比 Excel 灵活多了。你可以用df['列名']抓列,用iloc定位,拼接、拆分都轻轻松松。Series就是单列版,拿来当字典用也方便。
想画图?df.plot()直接上。不够看?搭配Matplotlib和Seaborn,图表就能玩出花。缺失数据那块儿也写得挺实用,像dropna()和fillna(),
统计分析
0
2025-06-24
SWOT 数据分析与可视化
SWOT 数据分析与可视化
SWOT 分析法,也称为态势分析法或道斯矩阵,是一种常用的战略规划工具,用于评估企业或项目的内部优势和劣势,以及外部环境中的机会和威胁。
SWOT 分析的四个要素:
优势 (Strength): 内部有利因素,例如强大的品牌声誉、高效的运营流程等。
劣势 (Weakness): 内部不利因素,例如缺乏资金、技术落后等。
机会 (Opportunity): 外部有利因素,例如市场增长潜力、新技术出现等。
威胁 (Threats): 外部不利因素,例如竞争对手的行动、政策变化等。
在 Excel 中展示 SWOT 分析结果:
可以使用 Excel 的表格和图表功能
统计分析
18
2024-05-24
Excel数据处理与可视化
Excel公式与函数
掌握Excel公式和函数是进行数据分析的基础,通过灵活运用各种函数,可以实现数据的计算、统计、查找、引用等操作,提高工作效率。
Excel可视化
清晰直观的图表能够帮助我们更好地理解数据,Excel提供了丰富的图表工具,可以根据需要创建各种类型的图表,例如柱状图、折线图、饼图等,将数据转化为易于理解的图形。
数据透视表
数据透视表是Excel中强大的数据分析工具,可以对大量数据进行汇总、分析和探索,通过拖拽字段,可以快速创建各种数据透视表,并根据需要进行筛选、排序和计算,从而深入挖掘数据背后的信息。
统计分析
17
2024-05-24
医疗数据处理与分析Pandas与Python的可视化技术应用
随着医疗数据处理需求的增加,Pandas与Python的可视化技术正逐步成为医疗数据处理、分析和可视化的首选工具。
统计分析
19
2024-07-14