音乐销售数据任务的代码资源,做得还蛮扎实的。课程背景是澳门大学商务编程课,主要是拿音乐销售数据做一整套。从数据清洗、EDA、客户,到个性化推荐,流程比较完整,适合新手练习,也能给老手启发。
音乐销售数据分析Python项目
相关推荐
手机销售数据分析
手机销售数据分析
这份 Jupyter Notebook 文件(.ipynb)包含了对手机销售情况的深入分析。通过探索和可视化销售数据,我们可以揭示出有价值的见解,例如:
畅销机型: 识别哪些手机型号最受欢迎,以及它们的销售趋势。
销售渠道: 分析线上和线下等不同销售渠道的表现。
地区差异: 比较不同地区或城市的销售情况,找出潜在的市场机会。
客户画像: 了解购买手机的典型客户群体特征。
销售趋势预测: 利用历史数据预测未来销售趋势,帮助制定销售策略。
使用 Python 和各种数据分析库,我们可以对销售数据进行全面的探索和分析,为业务决策提供数据支持。
统计分析
23
2024-04-30
Python 数据分析入门
通过学习本教程,掌握使用 Python 语言进行数据分析的技能。
算法与数据结构
16
2024-05-19
python数据分析pandas
使用pandas进行Python数据分析是非常有效的。
算法与数据结构
11
2024-07-15
某商超销售数据分析
这份数据适用于数据库分析或者初学者使用SPSS分析。它涵盖了某商超的销售情况。
MySQL
13
2024-07-24
Python 数据分析概述
使用 Python 进行数据分析,了解其优势、功能和应用。
数据挖掘
18
2024-05-01
Python数据分析教程
功能全面的 Python 数据教程,适合刚入门或者想系统整理知识的你。用的是比较实用的库:像pandas、numpy、bokeh还有scikit-learn,几乎就是数据的标配组合了。安装环境推荐用Anaconda,一次到位,省得折腾依赖,挺适合懒人和效率党。
Ipython Notebook也就是现在说的 Jupyter,用起来也蛮顺手的。在浏览器里写代码、跑结果,图表也能直接显示,边学边看,反馈快。你写一个函数试试看,马上就知道对不对,体验还是挺爽的。
Pandas是主角,它的DataFrame和Series这两个数据结构真的是数据的利器。比如你导入一个 Excel 表,转成DataFra
算法与数据结构
0
2025-07-02
某瓣读书数据分析Python数据分析案例
数据总是让人觉得有点复杂,不过像这个【某瓣读书数据】的案例还是蛮简单易懂的。它不仅展示了如何从多个维度对数据进行深度,还带了不少实际应用场景。你可以看到数据清洗、数据可视化等操作的细节,学习起来轻松。而且,通过这个案例,能看到实际开发中常遇到的数据问题,适合新手或者想要进阶的开发者。嗯,如果你正好有兴趣,也可以看看相关的其他案例,像是【某商超销售数据】和【气象数据 CSV 文件案例】这些都挺不错的哦。
统计分析
0
2025-06-24
R语言数据分析项目
这是一个使用R语言进行数据分析的项目,包含完整的代码和数据,可用于学习和实践数据分析技能。
数据挖掘
21
2024-05-12
TMDB电影数据分析项目
电影数据的项目里,TMDB 的数据集真的是蛮值得一试的。它的数据量大、字段也挺全,像导演、演员、预算、票房这些,全都给你列出来了,适合拿来练手做数据或者机器学习项目。
图表方面你可以整点饼图、条形图、折线图来票房和类型的关系,搭配 matplotlib 和 seaborn 用起来还蛮顺手的。像 plt.bar()、sns.lineplot() 这些方法都能直接上手,效果也直观。
数据预这块也别马虎,先用 dropna() 缺失值,再把类型转一转,比如上映日期转成时间格式,用 pd.to_datetime() 就行,方便后面画趋势图。
逻辑上,建议你先看 电影类型 跟 票房、利润 的关系,用 c
算法与数据结构
0
2025-06-29